RECEIVING 10 GHz EME WITH SMALL EQUIPMENT by Hans van Alphen PA0EHG

DL0SHF beacon

- In December DL0SHF starts with the 10 GHz beacon
- Using 7.6 mtr dish and 50 W output
- 10368.025 MHz transmit, Using vertical polarization
- First start in CW only
- On request QRO power ~600 W out

My first RX test

- January 2014 my first RX test with my 3 mtr system
- Good signal and requested for QRO for a test with my portable 10 GHz station using 50 cm dish
- Per responded immediately. QRO after 1 hr

Test with portable station

- Short preparation time
- Clouded, no visible moon
- Freq not stable
- Could hear QRO very strong on the 3 mtr dish
- Aiming the 50 cm dish to the moon was the most difficult part
- Heard the signal report M to O copy

Lessons learned

- Aiming dish to the moon is more difficult then expected
- Opening angle 5 degrees, so what!!
- Portable station not optimized for EME
- Mechanical construction was not easy for vertical polarization
- Needed an optimized EME setup

New system

- Found a small gearbox at very reasonable price, sold for astronomical purposes for mounting a small telescope
- Cost about \$200

Two version of gearbox

- Using GPS for position finding
- No GPS but about \$100 cheaper
- Started with GPS gearbox
- Worked fine but found that at start up elevation must be at 90 degrees so GPS will be blocked by the dish

EME2014

• Decided to use the gearbox without GPS

The dish, 48 cm

- Procom dish, prime focus
- F/D ~0.4
- Feed needed using vertical polarization
- Weight as small as possible
- · Found an AL taper from rectangular to square waveguide
- Almost optimal illumination for F/D 0.4

Receive system

- Using DB6NT pre amp waveguide input with 0.7 dB noise figure
- Short cable to DB6NT transverter to 432 MHz IF
- Possibility to lock to 10 MHz reference

Mechanical setup

- Using a dovetail connection to the gearbox
- Dish over the centre of gearbox
- Needed a counterweight to balance the elevation drive

System testing

- First test measuring solar noise
- Measure 3.3 dB solar noise
- 4 dB ground noise

Using gearbox

- At start up, first setup, at 90 degrees elevation and aiming south
- Enter location, Lat, Long
- Then enter the date and time into the computer
- Go to, sun or moon
- Possible to correct for line up errors
- First aim at the sun and optimize solar noise, then "go to Moon", ready to liste

Receiving DL0SHF QRO

- 30-3-2014 DL0SHF in QRO
- This was the time for my test of the new system
- WX was fine
- First check and align gearbox on the sun
- Then to the moon

CW signal

WSJT JT4G

DL0SHF non QRO

- Test with low power, no result
- · Should be possible to receive
- After contact with Per it was confirmed that power was down to 8 Watt instead of 50 Watt
- Test with G3WDG using 3 mtr dish and 50 Watt output

G3WDG

• Started with carrier, 1dB/div, 3 to 4 dB S/N

G3WDG on CW

- Easy visible on SDR
- Audible CW tone
- Just a bit to weak to copy the CW

G3WDG WSJT JT4F

- Good direct decodes
- Test showed that with 3 dB degradation I still could get averaged decodes

Test during DUBUS EME contest

- During DUBUS EME contest looked for other signals
- Found OK1KIR
- Found SP1JLW strong signal
- DL0SHF on QRO

SDR and weak signals

- Good experience with Spectravue
- Finding signals is easy when using FFT Averaging

- Using continuum mode for noise measurements
- Even possible to measure the 0.1 dB moon noise

Measure Moon noise

- 0.1 dB/div
- First on the moon
- Then turn away
- Using Spectravue continuum mode

VK3UM calculation on DL0SHF

Two Station EME Receiver Performance Source Positions Planets	0 Multiplier	Note Pad Feed Type X ref Version History /Help About Exit
Tx A (Home Station) rid0sit Diam Mests Spacing Spaci	B>	Yagi Array Number of Yagit € 38,3 * Array Galit Single Yagi Galit in dB1 Image: Array Galit Image: Array Galit Image: Array Galit Image: Array Galit 12,655 dBi Image: Array Galit 12,655 dBi Image: Array Galit
Unit Your last sfu data record has been loaded. 0.00 d8 C.cgrowd 7.4 dB 80 0.10 dB 0.40 dB 33,0 dB 2.0 dB 1.0 dB 10 "K 0 "K 18.2 dB Sobir Fire UNA tors UNA tors UNA tors UNA tors UNA tors So to "K 3.48 dB	₿>	Parabolic Reflector Feed Type W2000 dtalmode ✓ Litrar Pol. Citrati Pol. Dkmetr Star 7/0 Emberoy Eam With Gain Dia Gain Dia Gain 7,60 m → Metric 0,40 → 23% → 0.27* 158322 49,84 dBd 51,99 dBi 3027 Lamitol Home Station y Factor Calc Noise Fix 0.16t Fix 0/6th Ti 0/6th Ti
Tr A Ortput Power Traismits (b) Loss Power at Freed Mooi Y ● 561 Watts 27,49 dBW ● 0.3 dB 524 Watts 27,19 dBW 82.881.954 W EIRP Rx T*K \$35,5 *K = 0,50 dB Crossid Temperature Syst *K = 0,72 dB Syst *K = 0,72 dB Syst *K = 0,72 dB		Noise Source Quiel Source 290 °K 7 °K 52.5 °K Sagitarius Cermination Aquarius Point Source Y Factor 7.42 dB Aquarius Leo Leo Accurate data is not available for this frequency or Noise Source. Approximate data has been
Dx Station as received at Home Station3,6 dB Home Station as received at Dx Station17,3 dB	-	I durus Idurus V Figte Holes
Tx B (Dx Station) n=d0614 Diam March Spacing		Yagi Array Humber of Yagi: E 11,6* Array Gali Chigh Yagi Gali hi dB1 Image: Constant of Yagi: E 11,6* Array Gali 17,30 dBi Image: Constant of Yagi: Image: Constant of Yagi: Earning 20,95 dB d 23,00 dBi Parabolic Reflector Freed Type VEMBA (Style) Image: Constant of Yagi: Image: Constant of Yagi: Image: Constant of Yagi: Distington Freed Type VEMBA (Style) Image: Constant of Yagi: Constant of Yagi: Distington Freed Type VEMBA (Style) Image: Constant of Yagi: Constant of Yagi:
80 0.02 dB 0.70 dB 24.0 dB 3.6 dB 1.0 dB 34 *K 0 *K 3.4 dB Solar Fire LIAA Loss LIAA Tota Coox Loss Rx NY Splittoer Feedbart		0.48 m + Metric 0.40 + 65% + 4.22* 1780 30.35 dBd 32.50 dBi
Image: Second	Moo 3 Moo	Inclusion Beam Watte Fado Note Beth Moon and Sun correction factors are applied to Home and Dx Station calculations. Image: Correction and Dx Station calculations. 10.53 M ² 2.10 Station calculations. Image: Correction and Dx Place 3.11 x 4.93 dB 2.95 x 4.71 dB 3013.74 Image: Correction and Dx Place 3.11 x 4.93 dB 2.95 x 4.71 dB 3013.74 Image: Correction and Dx Place 52.255 dB 5.2595 0.559* 213 "K213.0 "K 6 Refault Lost KM3 Corrected rt 287.92 dB 356400 KMs 223.80 dB 264 Visual KM3

EME2014

VK3UM calculation on G3WDG

/Two Station EME Receiver Performance Source Positions Planets × 10 Multip	olier Note Pad Feed Type X ref Version History /Help About Exit
	Yagi Array Numberofyagi: g 38,3 * ArrayGah Chige yagi Gah h dBi ▲ 1 ■ Beam Wuth Beam Wuth 12,65 dBi ■ 1 ■ H 38,3 * 10,50 dBd 12,65 dBi
GET IPD Stru DATA Co.C.s. ground → C.S. groun	Parabolic Reflector Peed Type WOIND U dial-mode Vinta Star Pol. Clicitar Pol. Clicitar Pol. Clicitar Pol. Clicitar Pol. Clicitar Pol. Clicitar Pol. Cait Dial Cait Dial Cait Old Q S5% Q O,68° S8507 45,52 dBd 47,67 dB 103.6 Lambda
Image: Constraint State Image: Constra	Home Station Y Factor Calc Hole Fix Oxiet
Rx T ^{IK} S5,5 "K = 0,50 dB Received remperature Sys T ^{IK} S2,5 "K = 0,72 dB 200 TK II TO Octain Note Temperature Octain Note Temperature Dx Station as received at Home Station7,1 dB	Construct of the calculation. Advarius Cygnus Taurus A Virgo Taurus
0,368 GHz 288,79 dB 7 K 🕃 12 Hz 🗟 Solid 📮 Dish -165,1 dBm -12,7 dB -	> Yagi Array Numberof Yagis e 11.6 * ArrayGala Shgle Yagi Gala la dBi a 4 a Beam Watta 17.30 dBi a 4 a H 11.6 * 20,85 dBd 23,00 dBi
GET IPS sru DATH C:S- ground → 4.8 dB 0.00 dB	-> Parabolic Reflector Feed Type VEURA (Stype) VEURA (Stype) VLUPA (Stype)
Sobir Fin LNA Loss LNA Gain Coar Loss Pa V Spilloer Feedbin D.D Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Image: Sobir Fin Sobir Fin Image: Sobir Fin Image: Sobir Fin Im	Effective Feram Wolfts Prado Note Both Moon and Sun correction factors are applied to Home and Dx Station calculations. Image: Constraint of the station of the station station calculations. Moos Beam Fill Factor Stati Beam Fill Factor Grit Rado Moos Team Fill Factor Image: Constraint of the station calculations. 1.28 x 1.06 dB 1.29 x 1.09 dB 1113.71 Image: Constraint of the station calculations Moos Read Equ. Moos Fill Factor Moos Read Rado Image: Constraint of the station calculations Image: Constraint of the station calculations Moos Read Equ. Moos Read Rado Team Station calculations Image: Constraint of the station calculations Image: Constraint of the station calculations Moos Read Equ. Moos Read Rado Moos Rado Team Pace Image: Constraint of the station calculations 52,69 dB 4,7554 0,532* 213 'K131,8 'K Image: Constraint of the station calculations
50 MHz 432 MHz 2304 MHz 10.368 GHz 70 MHz 144 MHz 900 MHz 3456 MHz 24.048 Ghz 406 MHz 222 MHz 1296 MHz 5760 MHz 47.088 Ghz 2229 MHz	Moon Petrn Loss LMs Corrected s m 288,79 dB 374360 KMs 224,23 dB 264 Free Space Loss at 10368 MHz

Conclusion

- It's possible to receive EME with a 50 cm dish
- For CW you need a real QRO station, DL0SHF QRO in CW is easy to copy
- For other stations you need better than 3 mtr dish and more than 50 W output
- JT4F gives good decodes using 3 mtr 50 Watt
- 2 Way QSO is possible in JT4F but not easy, 50 W needed
- Use a small gearbox makes life much less complicated