Preparations for 78 GHz EME The NEXT Final Frontier?

Barry Malowanchuk VE4MA

Microwave Update Conference October 2010 Preparations for 78 GHz EME – The NEXT Final Front Frontier?

The Challenges

The Technology

Results to Date & Schedule

Recall the First 47 GHz Echoes

- RW3BP on July 24, 2004 "Outstanding! "
- >100 Watts Output, 2.4 m Offset Dish, ~ 50 MW ERP!
- ~4 dB NF "HB" Preamplifier, ~10 dB Sun, 1 dB Moon Noise
- Copied By AD6FP, VE4MA, VE7CLD, W5LUA

000

But this was as good as it got !

2.4 m Offset Fed Dish at RW3BP

78 GHz Feed on 2.4 m Dish at RW3BP

- First Tests in 2008
- 1 x UMS CHA1077
 Preamp with a
 Fundamental
 Mixer ~ 6.5 dB
 DSB NF
- 5.8 dB of Sun Noise
- 0.53 dB of Moon Noise

EME Challenges at 78 GHz

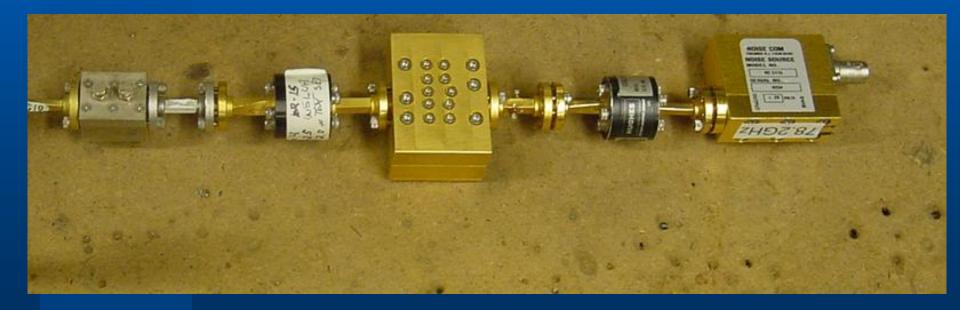
- Rough surface of moon produces very rough sounding note – like aurora
- Spreading can be several hundred Hz making the use of very narrow bandwidth IF filters impossible
- Doppler shift upwards of +200 kHz on rising moon and –200kHz on setting moon
- Antenna beamwidths less than half the 0.5° subtended angle of the moon

Atmospheric Effects at 78 GHz

- Unlike 24 GHz, but like 47 GHz, 78 GHz is not significantly affected by Humidity on an EME path
 - it is a relatively thin slice of atmosphere
- Oxygen absorption is present at minimum levels
- Best EME conditions occur ????

Best EME Conditions at 78 GHz

- Atmospheric absorption worst on horizon
- Doppler shift is extreme near horizon
 - Tracking programs calculate very closely
- Signal Spreading is more severe as moon moves to zenith
 - But now can be predicted using software


78 GHz System Requirements

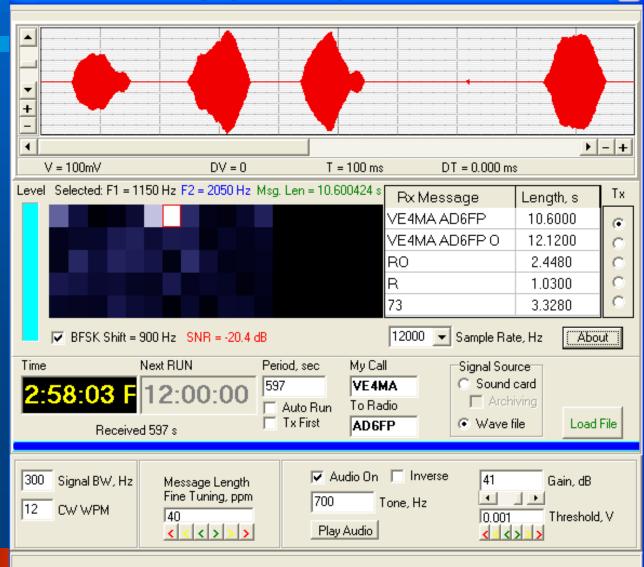
- Experience from 47 GHz work
- Best Available Hardware was not Good Enough
 - ~ 4 DB NF Preamps
 - 1.8 2.4 m Offset Dishes (~57-60 dB Gain)
 - 30 W output
- NO Signals Heard !

 Predictions Said "More System Gain Needed" (NF, Ant Gain, or TX Power)..6 dB Needed

78 GHz System Hardware: Preamps

WA1MBA Preamplifier of course
~ 3 dB NF Preamps so System NF ~3.5 dB

78 GHz EME RX Improvement?

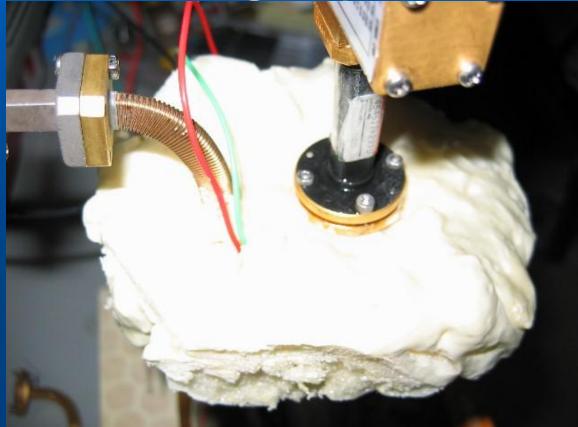

• RW3BP Software "Extends The Receive Threshold"

- Signal Spread from 300 to 450 Hz Wide
- Long Transmission Periods
- CW Transmission
- BFSK & "Special" CW Modulation
- Time Averaging Techniques to Extend Minimum RX Threshold
- CW Playback of Averaged Signal
- Newer Software JT4???

mmWave EME Software

×

Millimeter Wave CW Exchanger: [1_ve4ma2.wav]



Better RX Performance With Cooling?

Better 47 GHz RX Performance With Liquid Nitrogen Cooling?

• 1.5 NF @ 77 deg K (4 dB @ 290 K)

78 GHz System Hardware: Preamps

- Preamps will not withstand LN2....but Dry Ice?
- Noise Figure of RX Mixer still needs to be Very Good ~6 dB SSB
- Standard Subharmonic Mixer ~13 dB NF, so must use Fundamental mixer

78 GHz System Hardware: Antennas

- 2.4m dishes were Marginal at 47 GHz
- 1.8m dish of AD6FP provided best performance
- Test Big and Small Dishes at 78 GHz
- Even 1m dish has ~57 dB gain and 0.5 deg BW
- Perfect 2.4 m dish has 63 dB gain & 0.11 BW
- The moon is only 0.5 degrees wide

AD6FP 47 GHz 1.8 Meter Dish

78 GHz Dish Tests at W5LUA

Tests on 2.4 m & **1m Dishes** Best Results from a 1m TV minidish •7 dB Sun Noise, 0.75 dB Moon Noise •50 Ohm/ Cold Sky 1.2 dB Ta = 133 KStill Room to **Optimize**

78 GHz Dish Tests at VE4MA

 Better results from a 2.4m TV dish than W5LUA, but only have 6.1 dB NF so far

3.5 dB Sun Noise on 2.4m
Only 2.8 dB on 33 inch mini-dish mounted like W5LUA

78 GHz Dish Tests at VE4MA

Best Results from a 1.2m **Satellite dish** •4.8 dB Sun Noise, still 6.1 dB NF Dish was old Hughes **DirecWay** "KA" dish with aluminum foil added

78 GHz System Hardware: Transmitter

In 2008 we said 100 W tubes on market, but custom built and cost of about \$100K....so unlike available to amateurs

78 GHz System Hardware: Transmitter

- "I WON the LOTTERY !"
- 73 Watt Klystron Oscillator
- Tested on 78160 MHz +/-82 MHz
- This Tube was One of Four
- The Search Continues for a Companion Tube

78 GHz System Hardware: Transmitter

 Needs 9 kV Power Supply and Really Good Water Cooling system

- Have HV Extension Cable
- Water Cooling in Sub Freezing Temperatures?

 Will need to be Phase Locked and FSK'd for Modulation

RW3BP Software Technical Requirements

Hold Frequency Within 200 Hz for 10 Min

 Need to Correct for DopplerExactly and correct at ~700 Hz / minute

- Phase Locking Simple Now?
- Use Reflock or ??...Simple Plug & Play??

Need Interface to HVPS for Phase Lock

(2006) The First 80 GHz EME QSO?

- 80 GHz Will Be MORE Difficult !
- CPI Canada makes 80 W Tubes ~\$100K!
- 5 dB NF Preamplifier Chips Available
- Dish Performance Questionable?
- 80 GHz EME QSOs....Unlikely

The First 78 GHz EME Work?

- Echoes within a year ???
- Have 1 Tube ...need second one for a QSO
- Or can we send one Tube back and forth???
- Good Dish Preamp & Dish Performance
- Stations working toward 78 GHz EME, RW3BP, VE4MA & W5LUA
- Lots of Work Still Required to Make it Happen!

Preparations for 78 GHz EME – The NEXT Final Front Frontier?

The Challenges

The Technology

Results to Date & Schedule

• Questions ???