"Multum in Parvo"

(Good things come in small packages)

5-band GHz EME from a European suburban garden

John Worsnop G4BAO

It's actually quite small

Small dish EME

- "Backyard Moonbounce" has been "done to death" at Conferences.
- So what am I doing here?
- My backyard is not the size of Vermont.
- Microwave EME is a challenge
- Microwave EME with a 15λ dish is a bigger challenge
- I'm in this hobby to learn things
- I've learned SO much since 2010

John Worsnop G4BAO

My First attempt 2010

- 1.4m spun aluminium solid dish
- 2320MHz

John Worsnop G4BAO

My First attempt 2010

- 1.4m spun aluminium solid dish
 - Small enough to pick up and carry.
 - It cost me nothing!
 - 2320MHz
 - Polar mount TVRO positioner
 - Square Septum feed
 - Non optimised "pie dish" choke ring

John Worsnop G4BAO

My First attempt 2010

- 1.4m spun aluminium solid dish
 - It worked but the dish is noisy on RX due to overspill
 - So, I'm an alligator
- But, I Worked

Call	mode	system
F2TU	CW	8m dish
OK1CA	CW	4.2m dish
G4CCH	CW	5.4m dish
ES5PC	JT65c	4.5m dish
G3LTF	CW	6m dish
OK1DFC	JT65c	10m dish
PY2BS	JT65c	2.7m dish
OK1KIR	CW	4.5m dish

John Worsnop G4BAO

More power to the Monster Igor!

I Visited my local hardware store to <u>make sure</u> I could work LY/DL1YMK

- Chicken wire "screen"
 - To reduce dish overspill
 - It worked!
 - Worked Michael on JT65c!
- Very low XYL support coefficient ☺

John Worsnop G4BAO

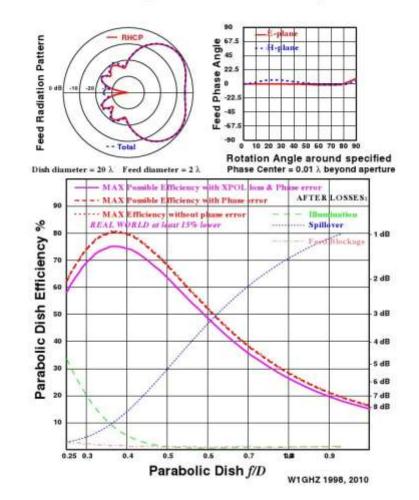
"Back to the drawing board"

- I already have
 - A top-notch preamp
 - (G4DDK VLNA13 sub 0.4dBNF)
 - Plenty of power (200 Watts)
- Conclusion
- to (mis) quote Chief Brodie in "Jaws"
- "I think you're gonna need a bigger dish"

System Issues and improvements planned

- I got better reports than I sent.
 - Bigger dish RF Ham design 1.9m mesh was the biggest I could get away with in my garden
 - Quieter feed (less overspill) Optimise the choke ring
- Finding and keeping on the moon
 - Tracking was by "button press"
 - Easy to over compensate/forget/lose track of time & GHA.
 - Need a better rotator
- Secondary 128MHz IF RX feed to listen on 2304MHz

John Worsnop G4BAO

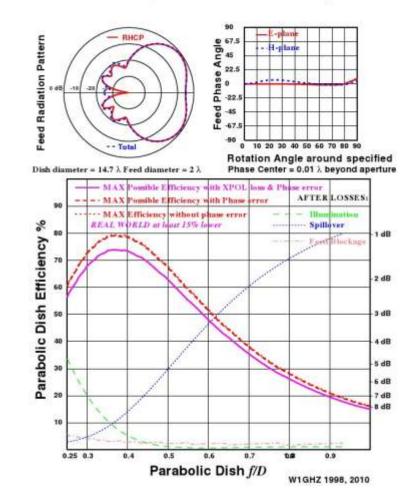

Setting up – lots of variables!

- Tune up the feed for best TX/RX VSWR and TX/RX isolation.
- Optimise the preamp
- Optimise the dish and feed
 - Measure ratio of sun to "cold sky" noise
 - Find the position of the feed that gives best sun/cold sky
 - Adjust choke ring position
 - Adjust the choke ring dimensions

Optimising the choke ring

- Referred to Paul Wade, W1GHZ's excellent 2007 paper on Septum feeds
- "Enhancing the OK1DFC Square Septum Feed With a Choke Ring"
- http://www.w1ghz.org/antbook/conf/se ptum_feed_with_ring.pdf
- Ah..... but my dish is less than 20λ!
- Solution, Email Paul

20 lambda dish, OK1DFC choke 2dia .35deep back .2


John Worsnop G4BAO

Optimising the choke ring

- Within 24hrs Paul had re- run the simulation and sent me this.
- A simulation for my exact dish size
- Don't you just LOVE our hobby and it's participants?
- Made up a 2 x 0.35λ choke ring, tried it, adjusted with Sun to cold sky
- I couldn't find a better position that Paul's theoretical prediction!

14.7 lambda dish, OK1DFC choke 2dia .35 deep back .2

John Worsnop G4BAO

Finding and keeping the Moon

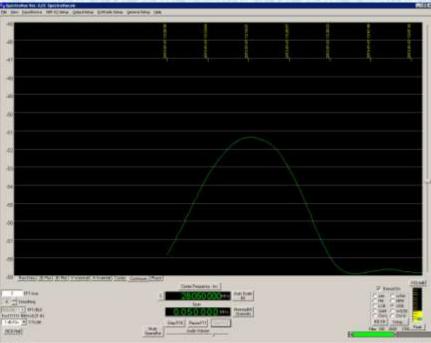
- Options
- "Clockwork" Polar mount running at constant rate
 - Daily fixed declination change
 - Cheap, simple.... BUT
- With a system not good enough to see moon noise
 - I have no easy starting place (absolute reference)

John Worsnop G4BAO

Finding and keeping the Moon

- Options
- Az-El mount
 - Absolute tracking on a small (5 degree beamwidth) dish
 - More expensive
 - Serious counterbalance needed
 - More computerised tracking support available
 - Tried "Standard" G500/G650 with Potentiometer feeback. They just won't hack it (non-linearity and slop)
 - SpiD RAS 1 degree per pulse encoder + "Moonsked" with 30 second update.
 - Finds the Moon and tracks it to within 0.5dB or so

John Worsnop G4BAO


Some results on 13cm

 Now typically 8dB sun to cold sky noise (SFI 110)

 -20 to -23 dB echoes in 2.5kHz (WSJT echo mode)

SpecJT	by K1JT						-	1.1												
Options	Freq: 1	027 DF	-243	(Hz)	B	N	<	>				Speed	C 1	C 2	0:	3 C	4 @	5 (° H1	Сн
	300 400 	500	600 1111	700	800 1 1 1 1	900	1000			1200	1300	1400	1500				1800	1900		
	Tax tony.	e jaja			-	-	COLUMN TO A		TRACKS IN	and the second second		it de	STATE OF BRIDE				and the second second			100.3
						280 S	16° 11	e Mes	8 - E		- 48 S	, kipite	Figure .	Avenue Avenue		213			2.3	
			1967	- 14 14	166	2 X	e e M	- 23 - 23				entri filiti.				l de				
			1.26	923	ALL STOCK	(a da	19. J. P			i la	W and	r News	e et s	(secol) y		5.3 N			
								in.		8										
		denda.	1022	an faith	realls.		in the second	i strak	* alka	i le de	6.9	25.38	a de la	7 die						H54
				7. E	e. M	1. A	l des	N.	ej nj			95 A		Re ^{res}			8 S.			
			Karalari (Norma	18 B	e d	购买	and the		and Note			(etter)		weigij				

09:34:30

John Worsnop G4BAO

Some Results on 13cm

- -21JT Echoes when moon close to perigee
- Easy to work 2.4m dish stations on JT65c
- 3.5m upwards to make CW QSOs
 - PA3DZL, OH2DG
- Probably a dB or so short of "easy" QSOs
 - (But if you want easy QSOs, go on 40 metres)

💱 SpecJT	r by K	Ш Т								;											-	
Options	F	req: 11	027 (DF: -2	43 (H:	Z)	B	w	۲	1	>			Speed:	C 1	C 2	03	C	4 (•	5 0	`H1	С на
0 200 11	300 11111	400	500	600 1 1 1 1		00 	800	900			1100	1200	1300	1400	1500				1800 	1900		210
The second	e sayes	Same -	1 ⁸⁰ 780	-		1.000 0.000				-	-	No. of Concession, Name		i den	COLUMN STREET,			-	12.24			the se
					128	8d#					News.		: 18 3	() (j) (f	$r_{m_{e}}$	N. COM	196	13				
					* **	16.5		4 2	406	Ø.,	EW.	alar .	20,13	er p		16.5	iven's M	(at				
				ev X j				6.20		i, M	A i i i	19534	No taje	W.	April	8 . T. 3	sears,	i.				
	155728			HE W.	an ak da	(A.48)	Praise	971634	2.30	18 es	6486 ()	LEXING P	ing _{ala} da	1122-12	A GEN CO		Crements	10,22		9, 3		
								á. A		23			alar.	76 A	i Ka	Re ^r ia						
1203				relient		W.	Ne fiel			29	hi de la	0. A.S	see so		(B)		es.	erey.				

09:34:30

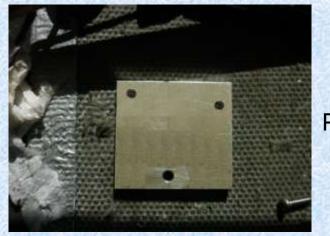
"Onwards and downwards" (to 1296)

- With a 1.9m dish! -"You must be mad, John!"
- Discovered the SM6FHZ patch feed
- 160 then 250 Watts via standard 1-2GHz 100W N type hybrid
- 0.28dB G4DDK VLNA23
- To date, 105 all mode initials
- 30 CW initials
- WAC

•

REALLY hard work, though `

"Onwards and upwards 2017" (5760MHz, Band #3)


- With a 6mm mesh dish! -"You must be mad, John!"
 - Correct not very good
- Decided to re-mesh the dish with 2.4mm galvanised
- 25W to RA3EQ feed
- 0.9dB "Franco Board" LNA
- To date, 13 all mode initials
- 2 CW initials G3LTF & DF3RU
- Not really performing as well as expected
 - Suspect the dish accuracy
 - Needs better pointing accuracy
- Upgraded the SPID in 2017 with 0.1 dB absolute sensors.

John Worsnop G4BAO

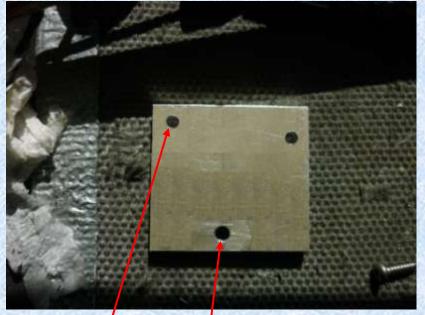
Adding rotary sensors to the SPID RAS

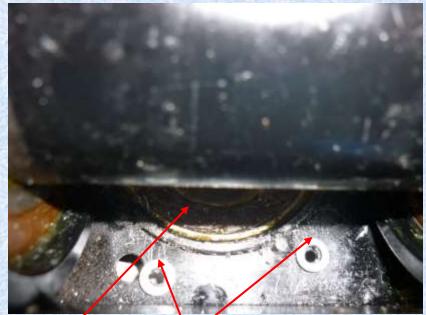
Azimuth Ideas based on work by DJ5AR and others

Shaft & plate in position

Plate

Centre shaft


Tube and sensor mount


John Worsnop G4BAO

Adding rotary sensors to the SPID RAS

Azimuth - Ideas based on work by DJ5AR and others The "L bar" shaft mount

Plate


Holes inside SPID for self- tap plate mounting

Mounting holes Threaded Shaft hole

Plate slides under the elevation shaft above the bearing

John Worsnop G4BAO

Adding rotary sensors to the SPID RAS

Sensor in position

Outrigger

Overall view

John Worsnop G4BAO

"Onwards and upwards 2017" (10368MHz, Band #4)

- With a mesh dish! -"You must be mad, John!"
 - Correct again not very too good
- 12 Watts to Linear SM6FHZ Kumar horn feed
- 0.6dB F10PA LNA
- To date, 2 all mode initials HB9Q, OZ1LPR
- It's a start!
- Not really performing as well as expected
 - Suspect the dish accuracy

John Worsnop G4BAO

"Back down again 2018" (3400MHz, Band #5)

- SM6FHZ Septum feed built by PA7JB
- 40Watt Toshiba Amp
- 0.4dB "G4DDK VLNA9
- To date, looking good after 1 weekend.
- 4 all mode initials DF3RU, OK1KIR, PA0BAT, PA3DZL
- Need more power, second Toshiba amp planned

John Worsnop G4BAO

Band changing and dish feeds

- 23, 13 and 9cm
 - Just preamp and feed at dish focus
- 6 and 3cm
 - Transverters and PAs also at focus

John Worsnop G4BAO

Band changing and dish feeds

- Common feed cage
- Feed slides in and out

So there you have it. 5 band EME

- I'm not going to win contests
- I'm not going to work all the DXpeditions
- I'm only going to do SSB with big guns!
 - Worked F2TU, G3LTF, OK1KIR, on 13cm, PI9CAM on 23cm and HB9Q on 13cm AND 23cm!
- But boy, I'm learning AND having fun!

Photo by Michael Nunes on Unsplash

Acknowledgements

- My XYL Vicki for tolerating a radio nerd for so long.
- Sam Jewell, G4DDK for getting me interested in small dish EME.
- Peter Blair, G3LTF for endless advice, parts and inspiration.
- John Lambo PA7JB for his peerless Mechanical Engineering skills.
- VK3UM, HB9Q, K1JT, SM6FHZ and others, too numerous to mention.

