

Welcome to this presentation which helps to highlight the capability of Genesys in the design of mixers for LTE applications

Our agenda today covers aspects of mixer function, parameters and mixer synthesis with emphasis on performance tradeoffs with different mixer topologies. We will show how, once a design has been finalized, to use the mixing parameters in system level tools such as WhatIF and Spectrasys

Depending upon the intended function a mixer component can either a frequency transformer or digital AND device

Direct conversion extracts information from the carrier by front end detection techniques. This process has been employed for many years for simple receiving systems under the nameof "Homodyne" converter where a amplifer near oscillation mode is used for amplitude detection

Some modern MMIC devices provide this functionality for limited performance systems. Higher RF frequencies are limited due to sampling rate of the A/D conversion processor and limited dynamic range.

Most receiver systems, especially in the cellular application use hetrodyne conversion using one or more mixers and following IFs. This technique provides the best sensitivity and selectivity performance. Shown above is a diagram of the progressively narrower bandwidth as a result of mixing and filtering allowing a receiver to select only a narrow portion of the spectrum to extract the transmitted modulation.

At very high frequencies where limited amplification is possible mixers translated the transmitted information to a lower frequency band which is easier to amplify.

Some key mixer parameters are listed here. Compression point limits the amplitude of the incoming signal. Isolation plays a key role in limiting the spurious signals in the IF and signals that may be re-radiated through the RF port or antenna.

Here we highlight the benefits(in blue) and negatives(in orange) of several mixer types. The most common mixers used are double balanced due to the higher isolation for RF to LO and IF. Single ended mixers can be useful in second or third stage convertors.

A few applications for mixers besides frequency translation or down conversion is in phase detection and providing phase offsets. Phase detection is often used in phase lock loops.

Additional applications include using a mixer used to switch a signal on and off. Often used in digital modulation for QPSK and QAM. At higher frequencies where amplification is more difficult and expensive they form the front end of the receiver such as in a radiometer. The ferrite switch constantly swtiches to a known reference to calibrate the receiver for the incoming millimeter wave signal

For synthesis and mixer performance comparisons we use the Genesys Mixer synthesis tool which as we will learn can help us to decide the best configuration to use for our particular application. Once we have chosen the mixer configuration and determined it's properties we will use WhatIF to view the useable IF spectrums based upon the mixer's performance.

Finally, having a system analysis tool like Spectrasys enables us to view the effect of our mixer on a receiver or transmitter chain.

GENESYS MIXER	nched From The Menu Tree Or
New Workspace	Open a recently used workspace Two Patch Pattern Prediction Select a workspace from the list on the right. Single Patch the Same Patch Pattern Prediction Cick CW to contrue. Single Patch the Pattern Patch P
Craphs Craphs Add Data Add Fourbinster Add Coulon Add Active Filter Add Active Filter Add Active Filter Add Active Filter	Single Pach mel Single Pach mel Arterna Brach 2 Create a new workspace from a template Sind a template nos the hist on the right. Sind a template nos the hist on the right.
Add Folder 2r Add Equazion 2r Add Impedance Match 2r Add Impe	Cyclular Template Cyclular Template Cyclular Template Cyclular Template Cyclular Template Flace
Add Table Add Signal Control Add Signal Control Add Signal Control Run PLL Run S/Fiker Run TLine	Totorials & Examples Old: on the Tutorial Videos Sutton to view some short tutorials: Old: We Open Example button to sopen one of our many examples: Open show ne the spain. Use the Tudo seriu Options
	command Startup tab to re-enable this dialog.)
	Agilent Technologies

We may launch any of the synthesis tools from the drop down workspace menu or from the start up screen shown.

GENESYS MIXER	
Mixer Type Selection	Dialog
 Pre Package Topologies Simple Single Ended To 	s To Aide Rapid Design Gilbert Double Balanced Designs
	Mixer Type Diode Single Ended Basic Vige Help Diode Single Ended Basic Vige Help Diode Right Balanced Diode Transformer Single Balanced Diode Transformer Single Balanced Diode Transformer Diode Balanced Bipolar Transformer Diode Balanced Bipolar Transformer Diode Balanced Diode Right Ranced Belanced Diode Right Ranced Belanced Reposition Windows Run Sweeps Apply
	Agilent Technologies

The Mixer dialog allows us to choose from a group of speicalized mixer types. Note the numerous types that are available. We will start with a simple single ended mixer.

Initial Design
So That Comparisons Can Be Made…We start with the simplest single ended mixer
Mixer Type Diode Single Ended Basic ype Help Bipolar Differential Value JFET Transformer Single Balanced Diode Bransformer Single Balanced Bipolar Single Ended Basic Value JOode Transformer Single Balanced Belanced Bipolar Informer Single Balanced Belanced Bipolar Informer Single Balanced Belanced Bipolar Transformer Diode Balanced Bipolar Transformer Single Balanced Belanced Bipolar Transformer Single Balanced Belanced Bipolar Transformer Single Balanced Belanced Bipolar Transformer Single Balanced Diode Balanced Gibert Diode Rank Values Reposition Windows Run Sweeps Apply Apply Apply
Agilent Technologies

The selection of the single ended mixer results in an automatic schematic and simulation generation. Frequency dependent components were generated automatically based upon our parameter inputs.

Mixer Parame	ers	
 Having Selected / Set Mixer Parameter RF, LO, and IF F 	A Mixer Type ers i.e. requencies and P	ower Levels
Mixer Definition Mixer Type Diode Single Ended Basic RF Input Frequency (MHz) LO Input Frequency (MHz) U Onput Frequency (MHz) C Output Frequency (MHz) C Output Frequency (MHz) C Output Frequency (MHz) C Output Power (dBm) LO Input Power (dBm) C Watto Adjust Frequency R Reposition Windows	Value 1960 2160 2000 -20 13 50	Power Levels Are Static Values Which Will Be Swept Over User Defined Limits
	*	Agilent Technologies

Set mixer parameters for a receiver band center frequency of 1960 MHz (LTE-1930-1990 MHz). We will use an IF center frequency of 200 MHz. The RF and LO power levels are somewhat arbitrary, however will we see later that this type of mixer requires higher LO drive levels.

The input filter or trap and output resonator are set to the selected IF frequency. Note that there is little to no isolation from LO to RF making this mixer a poor choice for a front end mixer. Out simply design is limited to a single IF frequency due to the filters used.

At the input port we notice that a large component of the LO energy that may effect reverse radiation or remix with the input stage. Note that there is a 3dB drop in the RF energy at the RF port, why is this? (hint: what other ports are connected to the RF port?) At the IF port we note an 8dB conversion loss. What is the isolation between the LO and IF port as well as the isolation between the RF and IF port? Remember that the LO power is 13dBm and that the RF power is -20dBm. Would this topology be suitable for a front end mixer with an antenna attached?

For the LO sweep the RF power is held constant at -20dBm. Note that a minimum LO power of approximately +10dBm is required to keep the mixer from starving. Keeping the LO power at 13dBm and sweeping the RF power we see a decline in conversion efficiency at +7.5dBm.

While an default diode helps us start our design, ultimately a known measured diode is required to predict performance accurately. GENESYS offers numerous non-linear models in SPICE and VerilogA format. We have selected an Infineon schottky for this example.

Note the changes in loss due to parasitics and parameters of our diode. With this diode selection the range of LO power over which our mixer will operate successfully is extended.

Spectral components remain relatively unchanged other than an increase in conversion loss.

-	- F#+ 0/ 0															
Ine	e Ett	Effect Of Q														
We Mea	Modi asure	fy The d	Ideal F	Schematic E	ona Ierrent N	ator	rs V	Vith	n R€	ealis	stic	Q,	E	stimat	ed O)r
	Hame	Description	Value	Units	Defaul	t Use Default	Tune	Show								
	F	Resonant Frequency	2	00 MHz	50			121								
	C :	Capacitance	51.4	49 pF	Ger	eral Parami	eters Simu	lation Param	eter Statisti	cs Custom S	Schematic Ele	ement Ne	tlist			
	QL	Inductor Q		80 ()												
	QC	Capacitor Q	4	00 ()		Name	De	scription		Value	Units	Default	Use	Tune Show		
	Display para	meters in alphabetical or	Di Carlagoritani General Presentani Sindaden Presentani Ottos Presentani and Hold Ottos Presentani and Hold Ottos Presentani and Hold Ottos Presentani Ottos Dateriti and Statuti Ottos	Parameter Stati as Entered as Entered (open Croat) (Pot Micl_Da (Pot Micl_Da (Pot S-data) Part in Layout dr Open ath Short	ALL berninals to	Schervatic Dem optitier)	vent Netlist	Prose Acety			eck Defaults		how Al	Defence Info Defence Info Defence Links		
							ķ.,	Agilent	Techn	ologies						

We can enter estimated values for element Qs for our resonators or use measured S-parameter data from the resonator manufacturer or individual values if discrete components are used.

Low resonator Qs have a small effect on the conversion loss. This allows us to be less selective in the resonator elements that we employ.

The changes in component Q's have little to no effect on the relationship of the harmonics and spurious spectral content.

The only frequency selective elements, beside the diode parasitics, are the IF resonators. Since our IF is fixed there is little to no effect verses frequency.

Adding IF Filtering Use GENESYS PASSIVE FILT	ER For Rapid Design And
Implementation	
From Library Analyses Designs Evaluations Graphs Syntheses Add Data Add Passive Fiter Add Data Add Passive Fiter Add Folder Add Soript And Soript Add Soript And Soript Add Soript Add Soript And Soript Add Soript And Soript Add Soript And Soript Add Soript And Soript And Soript Add Soript And Soript	Filter Properties Topology Setting: Defaults & Values Summary Type @wpbss Shape Butterworth
	Agilent Technologies

We will now add an IF filter to our mixer to reduce harmonics and unwanted mixing products from our signal. Using the Passive Filter tool makes this addition effortless.

Selecting Filter Type A	nd Shape
Select From Numerous Top	ologies
The Filler Despection	
ther Properties	© Filter Properties
Type Lowpass Shape Butterworth Subt Corpass Bandpass Bandpass Bandpass Output Resistance = 50.000000 3d8 Frequency is 500.395902MHz Reposition Reposition	Topology Settings Defaults G Values Summary Type Highpass Shape Butterworth Subtype Butterworth Me Orbeyshev Besterworth, Singly Terminated Cauer-Chebyshev, Singly Terminated Cauer-Chebyshev, Egual Singly Equalized Singly Equalized User File Browse Jourge File Browse Output Resistance = 50.00000 3dB Frequency is 499.604411MHz Reposition Windows Undo
	Agilent Technologies

The filter function is defined by the *Type* and *Shape* selection. This determines the roll-off and in band response. Note, with the addition of singly terminated shapes, diplexer filter design is possible also known as constant return loss filters.

Selection Of Parameters				
Next • Number Of Sections Or Order • Cutoff Frequency	Settings Defaults & Values Summary Input Resistance 50 Cotoff Frequency (Mt2) 500 Cotoff Frequency (Mt2) 500 Cotoff Frequency (Mt2) 500 Cotoff Frequency (Mt2) 500 Cotoff (dB) 3 Attenuation at Cutoff (dB) 3 Reposition Windows Attenuation at Cutoff (dB) 4 Attenuation at C			
	Agilent Technologies			

Under the Settings tab we specify the filter's impedance as well as the number of filter sections, cutoff frequency and attenuation at cutoff for non-Butterworth filters. We select 500 MHz as our cutoff frequency to attenuate unwanted harmonics and spurious while minimizing the in band loss at 200 MHz.

Passive Filter automatically generates a schematic and response curve. Changes made in the definition dialog are instantly updated in these graphs

Instead of copying the filter directly into our mixer schematic we use the filter sub-net as packaged component shown to the right of our mixer.

Note the reduction in spurious IF output. Conversion loss remains constant. To Improve the LO suppression, a higher filter order may be implemented.

LO to RF port leakage limits the applications of this mixer. If we spread the separation with the LO frequency so that an appropriate RF filter can dissipate the LO signal, the resulting image frequency appearing at the IF output is more difficult to filter out. This type of mixer is more suitable for second or third mixer in a chain. The higher power required increases the opportunity for interference into other networks in our system.

Alternative Mixer Design				
Returning To Our MIXER Synthesis Tool				
Mixer Definition Mixer Type Bipolar Double Balanced Gibert Diode Single Ended Basic Bipolar Differential JFET Transformer Single Balanced Diode Branch Line Single Balanced Diode Transformer Double Balanced Diode Transformer Double Balanced Bipolar Transformer Digle Balanced Bipolar Transformer Single Balanced Bipolar Transformer Single Balanced Diode RR Race Single Balanced W Auto Adjust Frequency Range Reposition Windows Run Sweeps	Value Defaul	Kixer Definition Mixer Type Bipolar Double Balanced Gilbert Variable RF input Frequency (MHz) Lo Input Frequency (MHz) F Output Frequency (MHz) F froutp Over (dBm) LO input Power (dBm) LO input Power (dBm) C Supply Votage Quica Adjust Frequency Range Reposition Windows Run Sweet	Type Help Value 1960 2010 511 177 50 5 9 Default Values eps	
		Agilent Techno	logies	

Let's try a different mixer. We use the same settings as in the single ended mixer but with the addition of operating voltage since this is an active mixer. The additional complexity results in better performance. While other double balance configurations are simpler the Gilbert allows us to implement a mixer with high dynamic range, higher power capacity and inherent isolation due to the balance in LO and RF driven ports

MIXER automatically selects the bias and frequency related components to ease our implementation. We note that the LO drive requirements are much lower which allow un-amplified synthesizer output for driving mixer. In addition we achieve conversion gain as opposed to a loss. Noise figure is generally improved. The active components may be substituted with alternate semiconductor technologies

The most notable observation of the port spectra is that there is a marked decrease in unwanted energy at the RF port. This is achieved by the balanced design. In fact little to no filtering would be required at the RF port. In addition, note the reduction in RF and LO signal at the IF port. This reduces the amount of post IF filtering. This design is inherently broadband.

The 1dB compression point occurs at approximately -21dBm input. Note that the IF output is constant over a wide range of LO drive level, approximately 10dB.

Single to Balanced conversion is difficult over a broad frequency range. While transformers work well up to about 1GHz, using them above this frequency requires tuning of the transformer over a limited band. To overcome this at the cost of additional circuitry we may implement the balanced drive using the circuit shown. In a separate workspace we tune and optimize the performance of the network to meet the performance of a transformer. We tune the circuit for equal drive levels which are 180 degrees apart. For this simple design we achieve a few degree shift over the entire LTE band. We additional effort we can extend the performance to cover multiple octaves up to and including WiMax.

The resulting schematic after substitution. Note, we could also reduce the active transformer network into hierarchical representations which helps to reduce schematic clutter. We retain a transformer output for the 200 MHz IF for simplicity and broadband performance. Note that GENESYS' HARBEC engine is capable of multi-device Harmonic Balance simulations.

Note the excellent port spectrums. At the RF port all spurious signals below -120dB have disappeared and the LO appears -66dB below our RF signal. The inherent reverse isolation of our active transformer has provided the isolation. In addition the RF and LO feed through has be reduced from -23dB to approximately -65dB. IF filtering is easier since the largest IF signal next to the difference frequency is the sum frequency at 4120 MHz. This is an inherently broadband design that may be used over multiple octaves.

While having slightly lower gain, the compression and LO sensitivity plots are the same. To improve gain performance some optimization between the active transformer and mixer is desired.

Having a base design, we can capture the data generated by GENESYS simulations to use in additional simulation and design scenarios.

Generating A Mixer Table							
Difference Frequencies For Mixer IF TableBuild Difference Table For Up To N Order							
			N=5 For (Our Example			
	LO	2160	4320	6480	8640	10800	
RF	1960	200	2360	4520	6680	8840	
	3920	1760	400	2560	4720	6880	
	5880	3720	1560	600	2760	4920	
	7840	5680	3520	1360	800	2960	
	9800	7640	5480	3320	1160	1000	
Agilent Technologies							

This 5th order mixer table will be used for defining a table mixer parameter entry. The table represents the difference frequencies given the RF and LO frequencies. The first entry represents the base or harmonic 1 for each.

Using the spectrum data from our simulation we enter the values normalized to the primary difference frequency at 200 MHz, as well as the RF and LO frequencies and their harmonics.

From the parts selector we choose the *Table Mixer* model to place on a schematic. Accessing it's properties we manually enter the data taken from our various simulations. Table data from our spectral data, compression data, LO power, RF power, impedance etc.

Having defined the pertinent parameters for our new mixer, save this mixer to a library. Above we save it to a library call 'My Parts'. The mixer is now available for use in other designs.

Using Our New Mixer	
WHATIF Helps Us To Determ For System IF And Subseque	ine The Spurious Free Ranges nt LO
Graphs Syntheses Syntheses	Whatlif (Frequency Planner) Properties Settings Type Name: My_Mixor_Plan Dataset: My_Mixor_Data Intermediate Frequency at Other Input Spurious Other Input Maximum Order: Other Input Amplitude Range: Online Thermediate Frequency: IDO Examine Worst Case Behavior of Anplitude Range: Online Intermediate Frequency: IF Center Frequency: IF Center Frequency: IDO Measing Help Reposition Windows Lindo Reposition Windows Lindo
	Agilent Technologies

We select the number of mixers, whether or not this will be used for upconversion or down-conversion as well as the spurious mixing order and dynamic range that we are interested in. We can focus on just one IF frequency or all IF's that may be available.

At the input tab we select the RF operating frequency as well as the expected bandwidth, which for our example is 60 MHz. The RF and LO drive levels are consistent with the nominal values as used in Gilbert simulation as well as the model entries. The IF bandwidth is set to what is required for LTE, e.g. 1, 2, 3 MHz etc.

Using Our Mixer Model			
Import <i>My Mixer</i> From • WhatIF Uses Our Model	A Dialog Selection A Parameters httlf (Frequency Planner) Properties prove Very Very As Very Very Very As Very Very Very As Very Very Very Very Very Very Very Very		
	Agilent Technologies		

The type tab allows us to select from a variety of mixer types. There is a built in double balance model as well as supplier defined models. In our example we will select our own design via the Mixer-Table model.

The results for our mixer are impressive. Since the spurious response of our mixer is excellent, the range of spurious free bands is almost unlimited. From the Inputs tab from the dialog box we alternately select between a high side mix (LO>RF) and low side mix (LO<RF) and review the best IF offerings for each.

For a system architecture tool, such as SPECTRASYS, we incorporate our *Mixer Table* model for design and review. Should it deem necessary to improve gain, intercept, spurious levels, or VSWR of our mixer these system level parameters can then be used to improve specific performance at the circuit level and then re-incorporated into our mixer model.

Summary

We Have Reviewed The Role Of A Mixer

We Have Synthesize A Basic Single Ended Mixer And Viewed It's Performance

We Chose An Alternate Gilbert Cell Topology Viewed And Modified It's Performance

Incorporated A Mixer's Performance Parameters Into A Hierarchical Model

Used WHATIF To View Mixer Performance

Agilent Technologies

