October 2011

Ground Gain

Measurement Procedure

Addendum to the article "Ground Gain in Theory and Practice" published in DUBUS 3/2011

Gaëtan Horlin, ON4KHG

Contents

1.	INTRO	DUCTION	4
2.	PREPA	RATION	4
	2.1. Step 2	1 : EXTRACT THE PACKAGE CONTENT	4
	2.2. Step 2	2 : INSTALL AND CONFIGURE SPECTRUM LAB	5
	2.3. STEP 3	3 : INSTALL AND CONFIGURE GJTRACKER	8
3.	MEASU	JREMENT	9
	3.1. Step 2	1 : PLAN THE MEASUREMENT	9
	3.2. Step 2	2 : EQUIPMENT WARM-UP	10
	3.3. Step 3	3 : REFERENCE NOISE (N _{REFERENCE})	10
	3.4. Step 4	4 : BACKGROUND NOISE BEFORE SUN NOISE MEASUREMENT (N _{BGD} PRE)	12
	3.5. Step !	5 : SUN NOISE (N _{sun})	14
	3.6. Step (6 : BACKGROUND NOISE AFTER SUN NOISE MEASUREMENT (N _{BGD} POST)	16
4.	POST P	PROCESSING	17
	4.1. Proc	ESS THE DATA FILES	17
	4.2. Publi	ISH THE REPORT	21
	4.2.1.	Sun rise measurement	21
	4.2.2.	Sun set measurement	23
	4.2.3.	Completion	24
5.	ADDITI	IONAL INFORMATION	25
6.	ANNEX	(ES	26
	6.1. If no ⁻	T USING A TRANSVERTER	26
	6.2. IMPO	RT YOUR OWN ANTENNA PATTERN	26

Personal Notes

1. Introduction

As an addendum to the article "Ground Gain in Theory and Practice" published in the magazine **DUBUS 3/2011**, this document describes the measurement protocol steps to be performed in order to assess one's own Ground Gain geometry and magnitude or in a more general way one's own antenna elevation pattern in presence of ground effects. The emphasis is on 144 MHz but it could be applicable to other bands through some customization.

The following equipment is required :

- A SSB capable receiving chain with an AGC disabling capability.
- A computer ; any current one will do the job.
- A soundcard, either embedded in the computer or external.
- A link between the receiving chain audio output and the computer soundcard input (Line IN), with a way to adjust the audio level in between.

2. Preparation

2.1. Step 1 : extract the package content

Unzip the content of the package to the root directory C:\. Don't do it somewhere else (i.e. in another directory), otherwise the Excel macros devoted to data processing will fail to work. You will get a directory with the following structure :

In the different directories, you will find :

- Documentation :
 - The present document, *Ground Gain Measurement Procedure v1-0.pdf*
 - Precedings of the IRE Scatter Propagation Issue Part 1, IRE 1955 Part 1.pdf
 - Precedings of the IRE Scatter Propagation Issue Part 2, IRE 1955 Part 2.pdf
- Measurement campaigns :
 - Examples of real measurements
- Softwares :
 - Spectrum Lab v2.76 b8 (by DL4YHF), Spectrum Lab 2-76.zip
 - o Configuration file Ground Gain Measurement.usr for Spectrum Lab
 - GJTracker (by W7GJ), GJTRACKER.zip
- Tools :
 - *Ground Gain Geometry and Magnitude Calculator File.xlsm* which is a theoretical simulator (MS Excel 2007).
 - *Ground Gain Sun Noise Measurement Processing File.xlsm*, the file (MS Excel 2007) to process the sun noise measurement data records and its desktop shortcut.

2.2. Step 2 : install and configure Spectrum Lab

- Install Spectrum Lab in whatever directory (this one not necessarily C:\). I'm using Spectrum Lab under MS Windows XP SP2.
 - In the directory where Spectrum Lab is installed, create the following sub-directories :
 - Captures

٠

- o **Logging**
- Move the file *Ground Gain Measurement.usr* provided in the measurement package to the sub-directory *configurations* of Spectrum Lab.
- Start Spectrum Lab (icon on desktop).
- In the menu toolbar, select File > Load Settings From.. :
 - Go to the sub-directory *configurations* and choose the file *Ground Gain Measurement.usr*.
 - Click on **Open**.

Look in: 🔒	configurations	🚽 🗢 🖻 C	* 💷 *
Name	*	Date mod	lified
gbr_cd.u	isr ounter.usr	14/01/200 23/04/201	07 21:12 1 20:22
Ground	Gain Measurement.usr	1/09/2011	. 23:53
HumFilt	er50.usr	23/11/200	3 08:46
HumFilt	er60.usr	23/11/200	3 08:45
•	III .]	۲
file <u>n</u> ame:	Ground Gain Measurement.usr		<u>O</u> pen
iles of type:	User Profiles (*.usr)	•	Cancel
			Help

This file contains the customized configuration required for the measurement. You need however some more own customization.

- In the menu toolbar, select Options > Audio settings, I/O device selection :
 - In the tab Audio I/O of the new window, select your own particular soundcard (Audio Input Device) amongst the list. According to your particular soundcard, it could be required to change also the Soundcard Sample Rate (e.g. 11025 Hz instead of 44100 Hz as for mine).
 - If you also want to listen (but it will just be noise), select the **Audio Output Device** too.
 - Click on **Apply** and **Close**.

SpecLab Configuration and Display Control									
TRX Control Memory	Filenames	Wave Fi	iles 🗍 Marke	ers	System Freq-Resp				
Spectrum (1) (2) (3	3) (•	4) Radio	DF FFT	A	udio I/O AD/DA Server				
Audio Input Device	Audio Pr	ocessing		_	Samplerate Calibrator				
0 Realtek AC97 Audio 🛛 🔻	Soundca	ard Sample Ra	ate 44100	-	Correct Frequency				
6 drivers found	decim	ate input SR k	by 1	•					
Ctrl other sources >>	Sample R	ate Calibratio	n Table [Hz]		Displayed Frequency				
Audio Output Device	Nominal	Input calib	Output calib	^					
-1 (use default WAVE ou 🔻	16000	16000.000	16000.000		Calibrate Input S.R.				
6 drivers found	22050	22050.000	22050.000						
r∰ Ctrl other destinations >>	32000	32000.000	32000.000		Calibrate Output S.R.				
	<u> </u>	male to pomin							
16 T bits/sample	Presample to nominal output S.R. Drift Calibrator								
Stereo Processing	j user	anterenii sanı Domina		uput					
l♥ minimize ratency		Homine	a. 140000	112	💡 about SR calib.				
<u>iva input aujustment</u>	Resa	mpling quality	high	-					
					Analyzay 4 shares 14 (1)				
			nown: Setting	is for	Analyser 1, channel 1 (L)				
		~	🗸 Apply		Close ? <u>H</u> elp				

- In the menu toolbar, select **Options > System settings > Timezone, Time source, Timer Calibration**:
 - In the tab Loc, Timezone, Time source, set Local time MINUS UTC(GMT) according to your location.
 - Click on **Apply** and **Close**.

SpecLab Configuration and Display Control 🛛 🛛 🔀
Spectrum (1) (2) (3) (4) Radio DF FFT Audio I/O AD/DA Server TRX Control Memory Filenames Wave Files Markers System Freq-Resp
Loc, Timezone, Time source Timer calibration HR-Timer-Test ADC input calib Misc. (1) Timezone Primary "Time"-Source Current value: 17:27:08.2 -> Resulting system time in UTC: Use audio-sampling clock (requires calib, best accuracy, almost no jitter, preferred) Use high-resolution timer (jittery sometimes) 0 Use the PC's "system" time (worst jitter) Default Receiver Location (geographic position, used when GPS receiver not available) 50° 36 ' 34.3"N 004° 00 ' 22.1"'E 0 Maidenhead @ deg",min',sec"
Shown: Settings for Analyser 1, channel 1 (L)

For example in Belgium in winter, we are at UTC+1h local time (UTC+2h in summer) \rightarrow e.g. UTC is 12:00, local time is 13:00 in winter (14:00 in summer). So, **Local time MINUS UTC(GMT)** is 1 (13-12) in winter and 2 in summer.

The computer must be synchronized on a NTP time server (there are many softwares to achieve this, e.g. D4, Chronos, Meinberg,...).

- Finally, in the menu toolbar, select File > Save Settings As.. :
 - Replace *SETTINGS.INI* by *Ground Gain Measurement.usr* chosen in the list.
 - o Click on Save.

Save in: 退 configurations	- + 🖻 (* 📰 🕇
Name	Date mod	lified
gbr_cd.usr GeigerCounter.usr	14/01/200 23/04/201	07 21:12 1 20:22
Ground Gain Measurement.usr	2/09/2011 23/11/200	10:48)3 08:46
	23/11/200	15 U8:45 ·
ile <u>n</u> ame: SETTINGS.INI		<u>S</u> ave
ave as type: User Profiles (*.usr)	•	Cancel
		Help

That is all, don't change anything else ; FFT, noise measurement formulas,... are already included in the *Ground Gain Measurement.usr* file.

• **Close** Spectrum Lab. For the subsequent measurements, Spectrum Lab is now configured once and for all.

2.3. Step 3 : install and configure GJTracker

- Install GJTracker (provided in the measurement package) on your computer, wherever you wish (in any directory).
- Start GJTracker and configure with your own data according to the following screenshot :

GJTRACKER Versio		GJTRACKER				End Date Apr - 2 - 2011							
Display	Callsign/Lookup	Locator	Add	Deg	Latitud Min S	e Sec	Dir	Deg	Long Min	jitude Sec	Dir	Deg Above	jrees Below
☑ Home	ON4KHG			50	36	34	N -	4	00	22	E	· -10	90
DX Stn							•					·	
Object Sun	·										[Operati Planning	on •
Increment 1	Minutes ES		Rcvr nois temp deg	e 80 K 80		M De	laximur egrada	n dB tion	0	C F	Compu lours n	ter Clock ninus UT	c 2
Lines per out	outpage 360 Re	gion 1 🗸	Units kn	n - E	Band 1	44 -	- Te	ext Edi	itor C	:\wind	ows\n	otepad.e	xe
	RUN	SET DEFA	ULTS	RES	START	·	H	HELP			EXIT	·	

- Lines per output page : set to "3600" (to ease subsequent processing work).
- **Computer Clock Hours minus UTC** : set in the same way as for Spectrum Lab, explained in section 2.2.
- Click on **SET DEFAULTS**, so that at next start all but the date will remain the same. GJTracker is now installed once and for all.
- Exit (close) GJTracker.

3. Measurement

3.1. Step 1 : plan the measurement

As an example, let's define the measurement takes place on April 2nd, 2011.

- Open GJTracker.
- Set Start Date, then End Date to "Apr 2 2011".
- Click on **RUN**.

GJTRACKER Ver	sion 2.0.9										• X	
Start Date	Apr • 2 • 2		GJTRACKER					End Date Apr - 2 - 2011				
Display	Callsign/Looku	up Locator	Add D	Latitu Deg Min	ide Sec Dir	Dea	Long Min	itude Sec	Dir /	Degr Above	ees Below	
⊡ F Home	ON4KHG		5	50 36	34 N	• 4	00	22	Е·	-10	90	
	n					•						
Objec	x								c	peratio	n	
Sun									Pla	inning	•	
Increment	Minutes E	ESC Y -	Rcvr noise temp deg k	< ⁸⁰	Maxi Degr	mum dB adation	0	Co Ho	omputer ours min	Clock nus UT(2	
Lines per o	utput page 360	Region 1 -	Units km	- Band	144 -	Text Ed	litor C	\windo	ws\note	pad.ex	e	
	RUN	SET DEFA	ULTS	RESTAF	ат [HELP			EXIT	E.		

• Here is an extract of the output text file :

APR 2, 2 SATURDAY JD: 24556	2011 553.5	PO	SITION C	OF Sun FROM (DN4KHG	50 ° 36' 34" N 4 ° 0 ' 22" E (QTH:JO10xo)
UTC AZ	IMUTH	ELEV	DEC	RT ASCN		
0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0430 0431 0432 0433 0434 0435 0436 0437	69.8 70.0 70.2 70.4 70.6 70.8 71.0 71.2 71.4 71.6 71.8 72.0 72.2 72.4 72.6 73.0 73.2	-9.9 -9.8 -9.6 -9.5 -9.3 -9.0 -8.9 -8.7 -8.6 -8.4 -8.2 -8.1 -7.9 -7.8 -7.5 -7.5 -7.3	$\begin{array}{c} 4.8\\ 4.8\\ 4.8\\ 4.8\\ 4.8\\ 4.8\\ 4.8\\ 4.8\\$	OH 44M OH 44M		

• Save this file under the name Sun Az-El.txt in the directory C:\Sun Noise Measurement.

It is important to respect the naming convention given here (both directory and file names), otherwise the processing macros in Excel won't work !

• **Exit** (close) GJTracker.

On April 2nd, 2011 for my location, the sun rises at 05:24 UTC (azimuth 82.4°) and sets at 18:12 UTC (azimuth 277.9°).

3.2. Step 2 : equipment warm-up

Equipment settings and conditions for a reliable measurement are as follows :

- Transceiver or receiver AGC (Automatic Gain Control) set to OFF.
- Transceiver or receiver set in SSB mode (200-2200Hz bandwidth required).
- Whole receiving chain (RX and soundcard) assumed to be linear.
- Transceiver or receiver Noise Blanker (NB) set to ON. The white noise to be measured is normally not altered by the NB, while the pulse noises (disturbing the measurement) will be suppressed.
- A clear frequency, not subject to disturbances (QRM).
- The whole station and computer powered ON at least 12 hours before performing the measurement, so that the whole setup is stable and at temperature during the measurement.
- Good weather with no wind or rain to avoid static noise.

3.3. Step 3 : reference noise (N_{reference})

When the sun is below -10° elevation for a sun rise measurement or above +35° elevation for a sun set measurement :

• Connect a 50Ω load at the input of the RX chain, as depicted below :

If you are not using a transverter, consider placing a preamp. in front of the transceiver or receiver, particularly if this last is a commercial model, to overcome the possible poor sensitivity and to allow the small (sun) noise variations (few dB's) to be noticed. In this case, the RX chain will look like :

- Start Spectrum Lab.
- Adjust the audio level out of the transceiver or receiver to get the yellow curve on the spectrum window around -50/-60 dB (this is not critical). Once adjusted, don't touch it anymore during the course of the subsequent steps of the measurement.

• Adjust the colour palette sliders as you wish. Don't touch it anymore afterwards.

- In the menu toolbar, select File > Text file export > Export of calculated data :
 - In the tab Filename & Activation, type in the file name as shown on the screenshot below (*Nreference.txt*).
 - Click on Apply.

Spectrum Lab – File Export Format	X
File Contents Filename & Activation Export of FFT results	
Export File #1: LoggingWreference.txt	
Export File #2:	
🔲 power-fail safe	
✓ Use write interval : 10.0 seconds, next write at: 11:17:05.8 Synchronize !	
Whenever a spectrum has been calculated, execute these commands:	
	Test
Before writing a line to the export file, execute these commands:	
	Test
After writing a line to the export file, execute these commands:	
export.value[3]=1	Test
<ciick and="" here="" result="" test="" the="" watch=""></ciick>	
Menu 🤆 Apply 🗸 OK 🗶 Cancel 💡	Help

It is very important to click on **Apply**, otherwise the measurement will further proceed on the previously named file.

To effectively start the measurement :

- Check in the checkbox Active. The Size will start to grow.
- Leave the measurement running up to when the **Size** has reached around 500 to 1000 (not critical).

Active Size:671

• Uncheck the checkbox **Active** to stop the measurement.

You can click on **OK** to close the window, but it is not required at this stage to close this window ; leave it open.

3.4. Step 4 : background noise before sun noise measurement (N_{bgd} PRE)

Once Step 3 is completed :

• Disconnect the 50Ω load and connect the antenna line. Don't forget to set the external (masthead) preamp. in by-pass mode.

• Rotate the antenna towards the first azimuth onto which N_{bgd} has to be measured.

For the example given here, the azimuth span ranges from 65° to 140°. Let's start with 65°.

- Direct your antenna to 65° azimuth.
- In Spectrum Lab name the data to record as on the screenshot below (*Nbgd 65deg PRE.txt*).

Spectrum Lab – File Export Format	X
File Contents Filename & Activation Export of FFT results	
Export File #1: LoggingWbgd 65deg PRE.txt Cative Size:0	
Export File #2:	
🔽 power-fail safe	
Use write interval : 10.0 seconds, next write at: 11:17:05.8 Synchronize !	
Menever a spectrum has been calculated, even to these commands:	
vinenever a spectrum has been calculated, execute these commands.	Test
J Before writing a line to the export file, execute these commands:	
Defore whiting a line to the export file, execute these commands.	Test
After writing a line to the export file, execute these commands:	
export.value[3]=1	Test
<click and="" here="" result="" test="" the="" watch=""></click>	
Menu 🤆 Apply 🗸 OK 🗶 Cancel \Upsilon	? <u>H</u> elp

- Click on Apply
- Check the **Active** checkbox to start the measurement. The **Size** starts to grow every 10 seconds.
- Leave the measurement running until the **Size** has reached around 500 to 1000 (not critical).

Active Size:671

- Uncheck the checkbox to stop the measurement.
- Then rotate the antenna towards 70° :
 - Update the file name (now *Nbgd 70deg PRE.txt* instead of *Nbgd 65deg PRE.txt* as above).
 - Click on **Apply**.
 - Check the **Active** checkbox and uncheck it once the size has reached 500 to 1000.

And so on up to 140° azimuth, per 5° azimuth steps.

The overall sequence is as shown hereunder.

In the menu toolbar, select File > Text file export > Export of calculated data :

Name the data file to record (mandatorily as Nbgd xdeg PRE.txt ; x = 0 to 360).

Azimuth x+5°

- Click Apply.
 - Check in checkbox Active to start.
- • Once size has reached 500 to 1000, uncheck to stop.

3.5. Step 5 : sun noise (N_{sun})

Right after Step 4 has been performed, the sun should be around -5° elevation for a sun rise measurement or around 30° elevation for a sun set one. Measure the sun noise in tracking mode up to around 30° (sun rise) or down to around -5° elevation (sun set). "Tracking mode" suggests an automatic way for the antenna to follow the motion of the sun in azimuth ; otherwise, you need to manually adjust the antenna position from time to time.

Once the antenna is set to the proper azimuth and ready to follow the motion of the sun, go to the menu toolbar of Spectrum Lab, select File > Text file export > Export of calculated data :

- Name the data file to record, mandatorily as *Nsun.txt*.
- Click on **Apply**.

Spectrum Lab – File Export Format	X
File Contents Filename & Activation Export of FFT results	
Export File #1: LoggingWsun.txt	
Export File #2: Active Size:0	
🔽 power-fail safe	
✓ Use write interval : 10.0 seconds, next write at: 17:59:15.8 Synchronize !	
Whenever a spectrum has been calculated, execute these commands:	
	Test
Before writing a line to the export file, execute these commands:	
	Test
After writing a line to the export file, execute these commands:	
export.value[3]=1	Test
caliat TEST and watch the regult here?	—
CITCA TEST and watch the result here?	
Menu K Apply V K K Cancel ?!	Help

- Check in checkbox **Active** to start (*).
- Let the measurement running and once the sun is out of range, i.e. above 30° elevation (sun rise) or below -5° elevation (sun set), uncheck **Active** to stop.

This measurement can take several hours, according to your latitude and period of the year.

To allow identifying *a posteriori* if some disturbance occurred during the measurement, it is wise to activate screenshot captures <u>prior to start</u> the measurement (*). To accomplish this, follow the steps below.

- In the menu toolbar, select File > Screen Capture > Screen Capture options.. :
 - In the tab Screen Capture, Set File Index to 1 and Filename to any name you want (no specific naming convention required here).
 - Click on **Apply**.

🔀 Screen Capture, Periodic and Scheduled Actions	×
Periodic Actions Scheduled Actions Conditional Actions Screen Capture Ca Screen Capture options Include: Include: Include: Include: Include: File index: 1 2 Color legend RDF circle Filename: Captures\Capt Sun Rise 02042011- RDF circle RDF circle show info in a solid box pos Left,Bottom stack vertical Implement "Date="+str("YYYY-MM-DD",now)+" Time="+str("hh:mm",now) Implement Implement "Freq= "+str("###0.#",water.f_min)+""+str("###0.#",water.f_max)+" Hz" Implement Implement Implement Implement	File Format File Format BMP FILE Format DPG JPEG Quality 80 % Capture now Update preview
Click here to update preview	
K Apply V Ok K Cancel ? Help	

• In the tab **Periodic Actions**, check in the checkbox **active** and then **OK**.

🔀 Screen Capture, Periodic and Scheduled Actions 🛛 🔀
Periodic Actions Scheduled Actions Conditional Actions Screen Capture Capture Macros
▼ active From 00:00:00 to 23:59:59 Interval 00:12:00 (hh:mm:ss)
Action macro(s) Example: capture
capture
Test ->
Note: the 'capture' command may execute other macros which are defined on the <u>screen capture macro</u> tab !
🔆 Apply 🗸 Ok 🕺 K Cancel 💡 Help

This will generate a screenshot capture named **Capt Sun Rise 02042011-1**. After 12 minutes, the next capture will be **Capt Sun Rise 02042011-2** and so on every 12 minutes throughout the whole measurement.

3.6. Step 6 : background noise after sun noise measurement (N_{bgd} POST)

When the sun is out of influence (above +35° for a sun rise or below -10° elevation for a sun set), repeat exactly (over the same azimuth span) the measurement performed at step 4 but in the data file names, use here **POST** instead of **PRE**.

For example, *Nbgd 70deg PRE.txt* at step 4 will be now *Nbgd 70deg POST.txt*.

Spectrum Lab – File Export Format	×
File Contents Filename & Activation Export of FFT results	
Export File #1: LoggingWbgd 70deg POST.txt	Active Size:136
Export File #2:	C Active Size:0
 power-fail safe ✓ Use write interval : 10.0 seconds, next write at: 18:01:05.8 	Synchronize !
Whenever a spectrum has been calculated, execute these commands:	
	Test
Before writing a line to the export file, execute these commands:	
	Test
After writing a line to the export file, execute these commands:	
export.value[3]=1	Test
<pre><click and="" here="" result="" test="" the="" watch=""></click></pre>	
Menu 🤆 Apply 🗸 OK	Cancel ? Help

4. Post processing

4.1. Process the data files

Since the measurement data collection is now finished, we can move to the next step which is the process of the data.

- Copy the files included in the sub-directory *Logging* of Spectrum Lab to C:\Sun Noise Measurement.
- Delete these files from the same sub-directory *Logging* of Spectrum Lab, otherwise any future measurement will further proceed on the preceding files if these are not deleted.

In the directory C:\Sun Noise Measurement, you have now the following types of files :

Sun Az-El.txt	Azimuth & elevation of the sun
Nreference.txt	Reference noise level when RX chain connected to a 50 Ω load (calibration)
Nbgd xdeg PRE.txt	Background noise when RX chain connected to the antenna, <u>before</u> the sun
	noise measurement, per 5° azimuth steps
Nsun.txt	Sun noise in manual or automatic tracking mode from -5° (sun rise) or 30°
	(sun set) elevation to 30° (sun rise) or -5° (sun set) elevation
Nbgd xdeg POST.txt	Background noise when RX chain connected to the antenna, after the sun
	noise measurement, per 5° azimuth steps

- In the sub-directory *Tools* provided with the package, open the file *Ground Gain Sun Noise Measurement Processing File.xlsm*.
- (1) : In the drop down lists on the left, select the measurement type, azimuth range and date.
- (2) : Click on **Clear All** prior to launch any new file upload.

Azimuth	Action	File Name		Status		Status
		Nsun.txt	Upload File			
		Sun Az-El.txt	Upload File			
		Nreference.txt	Upload File			
0			Upload PRE File		Upload POST File	
5			Upload PRE File		Upload POST File	
10			Upload PRE File		Upload POST File	
15			Upload PRE File		Upload POST File	
20			Upload PRE File		Upload POST File	
25			Upload PRE File		Upload POST File	
30			Upload PRE File		Upload POST File	
35			Upload PRE File		Upload POST File	
40			Upload PRE File		Upload POST File	

- (3) : In the field File to upload, select alternatively :
 - Az. El., then click on Upload File in front of the corresponding file name (*Sun Az-El*), preceded by File to upload highlighted in orange in the column Action.

REFERENCE, then click on Upload File in front of the corresponding file name (*Nreference*), preceded by File to upload highlighted in orange in the column Action.
 PRE, then click on Upload File in front of the corresponding file name (*Nbgd xdeg PRE*), preceded by File to upload highlighted in orange in the column Action.

60			Upload PRE File	Upload POST File	
65	File to upload :	Nbgd 65deg PRE.txt	Upload PRE File	Upload POST File	
70	File to upload :	Nbgd 70deg PRE.txt	Upload PRE File	Upload POST File	
75	File to upload :	Nbgd 75deg PRE.txt	Upload PRE File	Upload POST File	
80	File to upload :	Nbgd 80deg PRE.txt	Upload PRE File	Upload POST File	
85	File to upload :	Nbgd 85deg PRE.txt	Upload PRE File	Upload POST File	
90	File to upload :	Nbgd 90deg PRE.txt	Upload PRE File	Upload POST File	
95	File to upload :	Nbgd 95deg PRE.txt	Upload PRE File	Upload POST File	
100	File to upload :	Nbgd 100deg PRE.txt	Upload PRE File	Upload POST File	
105	File to upload :	Nogd 105deg PRE txt	Upload PRE File	Upload POST File	
110	File to upload :	Nbgd 110deg PRE.txt	Upload PRE File	Upload POST File	
115	File to upload :	Nbgd 115deg PRE.txt	Upload PRE File	Upload POST File	
120	File to upload :	Nbgd 120deg PRE.txt	Upload PRE File	Upload POST File	
125	File to upload :	Nbgd 125deg PRE.txt	Upload PRE File	Upload POST File	
130	File to upload :	Nbgd 130deg PRE.txt	Upload PRE File	Upload POST File	
135	File to upload :	Nbgd 135deg PRE.txt	Upload PRE File	Upload POST File	
140	File to upload :	Nbgd 140deg PRE.txt	Upload PRE File	Upload POST File	
145			U. I. I DOG ST	U. I. IROSTICI	

- **SUN**, then click on **Upload File** in front of the corresponding file name (*Nsun*), preceded by **File to upload** highlighted in orange in the column **Action**.
- **POST**, then click on **Upload File** in front of the corresponding file name (*Nbgd xdeg POST*), preceded by **File to upload** highlighted in orange in the column **Action**.

			opiouurnerne		opiouurostitie	
65	File to upload :	Nbgd 65deg POST.txt	Upload PRE File		Upload POST File	
70	File to upload :	Nbgd 70deg POST.txt	Upload PRE File		Upload POST File	
75	File to upload :	Nbgd 75deg POST.txt	Upload PRE File		Upload POST File	
80	File to upload :	Nbgd 80deg POST.txt	Upload PRE File		Upload POST File	
85	File to upload :	Nbgd 85deg POST.txt	Upload PRE File		Upload POST File	
90	File to upload :	Nbgd 90deg POST.txt	Upload PRE File		Upload POST File	
95	File to upload :	Nbgd 95deg POST.txt	Upload PRE File		Upload POST File	
100	File to upload :	Nbgd 100deg POST.txt	Upload PRE File	×	Upload POST File	
105	File to upload :	Nbga 105deg POST.txt	Upload PRE File		Upload POST File	
110	File to upload :	Nbgd 110deg POST.txt	Upload PRE Eile		Upload POST File	
115	File to upload :	Nbgd 115deg POST.txt	Upload PRE File		Upload POST File	
120	File to upload :	Nbgd 120deg POST.txt	Upload PRE File		Upload POST File	
125	File to upload :	Nbgd 125deg POST.txt	Upload PRE File		Upload POST File	
130	File to upload :	Nbgd 130deg POST.txt	Upload PRE File		Upload POST File	
135	File to upload :	Nbgd 135deg POST.txt	Upload PRE File		Upload POST File	
140	File to upload :	Nbgd 140deg POST.txt	Upload PRE File		Upload POST File	

When the files are uploaded, the status becomes **File uploaded**, highlighted in green.

Meas. Type : Lowest azimuth : Highest azimth : Day : Month : Year :	Sun Rise	<u>Clear All</u>	File to upl	oad : POST 💌	Process Files RSF & Station Data (4)
Azimuth	Action	File Name		Status	Status
		Nsun.txt	Upload File	File uploaded	
		Sun Az-El.txt	Upload File	File uploaded	
		Nreference.txt	Upload File	File uploaded	

• (4) : Click on **RSF & Station Data**, you get the following window :

Ph Pł	Frequency [MHz] : ysical Temperature [*C] : iysical Temperature [K] :	144.3 17 290	Ante	nna Jumper	Preamp.	Pream	rp. BP Filte	ansverter Ar Mixer	Amplifier	Feeder 2	Transceiver
									ĸx		
							Sys	tem			
		Antenna	Jumper	Preamp. (External)	Feeder 1	Preamp. (Transverter)	Band-Pass Filter	Mixer	(Post-mixer) Amplifier	Feeder 2	Transceiver
	Gain G [dB(i)] :	16.30	-0.10	-0.10	-0.80	22.00	-2.00	-7.00	9.00	-4.00	
	Gain g [] :	42.66	0.98	0.98	0.83	158.49	0.63	0.20	7.94	0.40	
[Noise Figure NF [dB] :		0.10	0.10	0.80	0.40	2.00	7.00	2.50	4.00	6.00
<u> </u>	Noise Factor f [] :		1.02	1.02	1.20	1.10	1.58	5.01	1.78	2.51	3.98
_ L	Noise Temp. T [K] :		6.75	6.75	58.66	27.98	169.62	1163.44	225.70	438.45	864.51
	Tload [K] :	290.00	F	(SF 2800 [sfu] :	108.0	Type in the RSF28	00 from U.S. S	W.P.C.			
	T(250 /6		PCF. [cfu] :	27.0	Polync	imial method				
	Nieference [K] :	-61 11		RSEv[sfu] :	71	x = 144 (Polynomi	al) or 50, 70, 1	44 (EME C	alculator of VK3UA	40	
	Melence[UD].	01.11	Tant sun	Tant sun [K] :	377.48 374.93	x - 144 (Folynolin	a, or 50, 70, 1	++, (ENVE C	nearator of VNJON	"'	Go Back

- According to your specific RX station data, fill in <u>only</u> the cells highlighted in yellow (all the others in grey show calculated figures). If you are not using a transverter, refer to the Annexes (section 6.1.).
- Select the RSF_x (x is the frequency band) calculation method and fill in the associated RSF figure, prompted by a dynamic cell highlighted in dark red. Two methods are possible :
 - <u>Method 1</u>: a polynomial law that extrapolates the RSF₂₈₀₀ (2800 MHz) down to 144 MHz, thanks to the data got from the U.S. Space Weather Prediction Centre website : <u>http://www.swpc.noaa.gov/ftpdir/lists/radio/rad.txt</u>

Example of a U.S. Space Weather Prediction Centre data :

 <u>Method 2</u>: data out of the EME Calculator of Doug, VK3UM. In this case, data for other bands than only 144 MHz are also available.

The software can be downloaded here : <u>http://vk3um.com</u>

If it is about using this software only to derive de RSF figures, there is no need to configure it, just install it anywhere on you computer.

In VK3UM EME Calculator, click on **GET IPV SFV DATA** at the top left of the window. A new window (**IPS Update**) appears. Click on **Current IPS Flux Data**.

The data got from the EME Calculator of VK3UM have proven to be more reliable in case of high or stormy solar activity.

- Click on **Go Back** at the bottom right of the window to come back to the previous window.
- In this previous window, click on **Process Files**.

Meas. Type : Lowest azimuth : Highest azimth : Day : Month : Year :	Sun Rise	Clear All	File to up	load : POST 💌	Process Files RSF & Station Data
Azimuth	Action	File Name		Status	Status
		Nsun.txt	Upload File	File uploaded	
		Sun Az-El.txt	Upload File	File uploaded	
		Nreference.txt	Upload File	File uploaded	

4.2. Publish the Report

Once the files are processed, you get two resulting charts. Here a manual operation is required on <u>both charts</u> before completion.

4.2.1. Sun rise measurement

In MS Excel (2007) :

 In the menu toolbar, select Layout > Axes > Primary Vertical Axis > More Primary Vertical Axis Options...

	• •	A COLORED IN COLOR		Chart Tools		Gro	und Gain Sun Noise Measure
Home Insert	Page Layout Form	iulas Data Review	View Dev	eloper Design	Layout	Format	
Chart Area Wy Format Selection Reset to Match Style Current Selection	Picture Shapes Text Box Insert	Chart Axis Legend Title + Titles + + L Labels	Data Data abels + Table +	Axes Gridlines Pl Are	ot Chart a Wall *	Chart 3-D Floor * Rotation	Trendline Lines Up/Dow Bars + Analysis
Chart 1 ▼ A B C 1 (G f≈ D E Ground Gain Mea	F G H surement - Resulti	ng Charts	Primary <u>Vertical A</u> Secondary Horizo Secondary Vertica	xis → ntal Axis → Il Axis →	None Do not Show D Display	displ <mark>a</mark> y Axis D efault Axis Axis with default order and
2 Publish Report 4 5 Azimuth min. : 77.9°	Date : 02/04/2011 RSF144 : 7.1 (Polyn Azimuth max. :	Meas. Type omial) Frequency 116.4° Elevation min.	: Sun Rise <u>N</u> : 144.3 MHz : -3.6° Elevati	ion max. : 25.9°		Show A Display represe Show A Display represe	Axis in Thousands Axis with numbers inted in Thousands Axis in Millions Axis with numbers inted in Millions
7 8 9 10 113.9 113.9				25.4		Show A Display represe Show A Display Display scale	txis in Billions Axis with numbers inted in Billions txis with Log Scale Axis using a log 10 based
12 111.9				- 22.4		More Prima	ary Vertical Axis Options

- The window on right (Format Axis) pops up.
- Copy the **Azimuth min.** figure on the chart to the field **Minimum** in the Axis Options (here 77.9).
- Copy the **Azimuth max.** figure on the chart to the field **Maximum** in the Axis Options (here 116.4).
- \circ Click on Close.

is Options	Axis Options		
mber	Minimum: 🔘 <u>A</u> uto	Eixed	77.9
	Maximum: 🔘 A <u>u</u> to	Fixed	116.4
Color	Major unit: 🔘 Auto	Fixed	2.0
e Style	Minor unit: 🔘 Auto	• Fixed	1.0
wob	Values in reverse of	order	
Format	Logarithmic scale	Base: 10	
gnment	Display units: None	-	
1990) 	Show display units	label on char	rt
	Major tick mark type:	Outside	•
	Minor tick mark type:	Outside	•
	<u>Axis labels:</u>	Next to Axi	is 💌
	Horizontal axis crosses		
	Axis value: 77.9	0	
	Maximum axis valu	e	

• In the menu toolbar, select Layout > Axes > Secondary Vertical Axis > More Secondary Vertical Axis Options...

0		17 - (1		-) -						Chart To	ols		Gro	und Gain Su	un Nois	e Measureme
C	н	me	Insert	Page Layout	Formulas	Data	Review	View	Develope	r Design	Layout	Form	at			
Se	Format S Reset to Current	ertical (V election Match Si Selectio	tyle	Picture Shapes	A Text Box Chart Title	Axis Titles	Legend	Data Dat Labels + Table	Axes	Gridlines	Plot Char Area + Wall	t Chart Floor *	3-D Rotation	Trendline	Lines	Up/Down I Bars * E
	Cha	rt 1	-	(fx			54234 V+342			Primary <u>H</u> orizon Primary Vertica	Axis				110110	
	A	В	0	D	E F	G	Н	T	J dh	Secondary Hor	izontal Axis	► N	0	P	8	Q
2 3 4 5 6 7	Pu Azimut	i <mark>blish R</mark>	eport : 77.9°	Date : 02/0 RSF144 : 7.1 Azimuth	04/2011 (Polynomial) max. : 116.4°	Me Fr Eleva	eas. Type equency tion min.	: Sun Rise : 144.3 MH : -3.6° E	New I	Meas. nax. : 25.9°			Show D Display labels Show A Display in Thou	efault Axis Axis with di axis in Thou Axis with ni sands	efault o sands umbers	rder and represented
8 9 10	13	13.9 -	-						2 1 	- 25.4 - 24.4 - 23.4			Show A Display in Millio Show A Display	Axis in Millio Axis with n ons axis in Billio Axis with n	ons umbers ns umbers	represented represented
12 13	11	.11.9 -				-				- 22.4 - 21.4		Log	Show A Display	ns xis with Lo Axis using a	g Scale a log 10	based scale
14		-	-	1 =	t				1	- 20.4		-	More Secor	ndary Vertic	al Axis C	Options

- The window on right (Format Axis) pops up.
- Copy the Elevation min. figure on the chart to the field Minimum in the Axis Options (here -3.6).
- Copy the **Elevation max.** figure on the chart to the field **Maximum** in the Axis Options (here 25.9).
- Click on **Close**.

1.1								
Number	Minimum: 🔘 <u>A</u> uto	Eixed	-3.6					
=ill	Maximum: 🔘 Auto	Fixed	25.9					
ine Color	Major unit: 🔘 Auto	Fixed	1.0					
ine Style	Minor unit: 🔘 Auto	Fixed	1.0					
Shadow								
3-D Format	Logarithmic scale	<u>B</u> ase: 10						
Alianment	Display units: None	-						
	Show display units	label on char	t					
	Major tick mark type:	Outside	-					
	Minor tick mark type:	Outside						
	<u>A</u> xis labels:	Next to Axi	s 💌					
	Horizontal axis crosses	s:						
	Axis valu <u>e</u> : 0.0							
	Maximum axis valu	ie						

4.2.2. Sun set measurement

Proceed exactly as described in section 4.2.1. ; the only difference is that in the window **Format Axis** which appears when you select **Layout** > **Axes** > **Primary Vertical Axis** > **More Primary Vertical Axis Options...** in MS Excel, you have to check in the checkbox **Values in reverse order**. Then **Close**.

Axis Options	Axis Options				
Number	Minimum: O Auto	Eixed	228.2		
Fill	Maximum: 💮 Auto	Fixed	275.2		
Line Color	Major unit: 🛞 Auto	Fixed	2.0		
Line Style	Minor unit: 🔘 Auto	• Fixed	1.0		
Shadow	Values in reverse order				
3-D Format	Logarithmic scale	<u>B</u> ase: 10			
Alianment	Display units: None				
	Show display units label on chart				
	Major tick mark type:	Outside	1		
	Minor tick mark type:	Outside	-		
	Axis labels:	Next to Ax	is 💌		
	Horizontal axis crosses				
	O Axis valu <u>e</u> : 0				
	Maximum axis valu	e			

4.2.3. Completion

On the **Ground Gain** graph (the second resulting chart), the **Theoretical GG pattern** (purple dashed curve) shows by default the elevation pattern of a 12-element DK7ZB at 17.3m agl over a perfect and flat ground. You can change this and select another antenna type, type of ground, antenna height and a flat or downwards tilted ground.

To achieve this, you have to :

• **Open** the file *Ground Gain Geometry and Magnitude Calculator File.xlsm* provided in the package (directory C:\Sun Noise Measurement\Tools).

		Ground Gain - Simulator Spreadsheet
Type of Ground :	Average	
Conductivity σ [S/m] :	0.0075	
Permittivity Er :	12.5	
Freq [MHz] :	144.0	
Height [m] :	17.3	
Ground slope [°] :	0.0	Ground Slope in front of Antenna. 0 for Flat or Negative for Downward Slope
Antenna Type :	12-element D	K7ZB 144
Maximum F.S. Gain [dBi] :	16.37	Other antenna Type in other antenna type name

- Select the **Type of Ground** and **Antenna Type** and fill in the **Frequency**, **Height** and **Ground slope**. You have the choice between a few antenna types, ranging from a dipole to a stack of 2x12-element antennas (144 MHz).
- Save this file (don't change its name) in C:\Sun Noise Measurement\Tools (nowhere else) and close it.
- Come back to the currently open file (*Ground Gain Sun Noise Measurement Processing File.xlsm*) and click on **Refresh and Include Theoretical GG Pattern**.

It is also possible to import your own antenna pattern ; refer to the Annexes (section 6.2.).

• You can also include some comments in the report (at the bottom of the **Ground Gain** graph).

RSF280) = 108 (source U.S. S.W.P.C.).
Theore	tical GG patterm for a 12-element DK7ZB at 17.3m agl, over perfect flat groun

• Click on **Publish Report** at the top of the page.

G	Ground Gain Measurement - Resulting Charts						
Publish Report	Date : 02/04/2011	Meas. Type : Sun Rise	New Meas.				
	RSF144 : 7.1 (Polynomial)	Frequency : 144.3 Mł	Hz				
Azimuth min.: 77.9°	Azimuth max. : 116.4°	Elevation min. : -3.6°	Elevation max. : 25.9°				

You have now a file named *Ground Gain Sun Noise Measurement Processing File.pdf* in the directory C:\Sun Noise Measurement.

- Rename this file in a more explicit way, e.g. Ground Gain Sun Rise ddmmyyyy.pdf
- Move this file *Ground Gain Sun Rise ddmmyyyy.pdf*, together with the Sun Az-El.txt, Nreference.txt, Nbgd xdeg PRE.txt, Nsun.txt and Nbgd xdeg POST.txt files somewhere else on your computer (wherever you wish, no specific convention required here).
- Delete these files from C:\Sun Noise Measurement ; this is mandatory to avoid disturbing the future measurements.

5. Additional information

The **Ground Gain** graph indicates the geometry and magnitude of the Ground Gain lobes (or antenna elevation pattern) but only the magnitude of the first lobe (the less elevated one) is reliable, since the calculated sun noise rise (NR_{sun}) is not weighted according to the free space antenna radiation pattern in the elevation plane. This will perhaps be updated in a future release of the tools.

To train how the file processing works, you can temporarily copy the measurement files provided as examples and available in the sub-directories (sorted by dates) part of the directory *Measurement Campaigns*.

6. Annexes

6.1. If not using a transverter

As written previously in this document, it is recommended to place a preamplifier in front of the transceiver (or receiver), all the more any external (masthead) preamplifier has to be set in by-pass mode to meet the calculation spreadsheets constraints.

6.2. Import your own antenna pattern

Explaining how to model antennas is beyond the scope of the present document. However, it is shown here how to export a <u>free space</u> elevation radiation pattern out of the modelling software MMANA-GAL (<u>http://hamsoft.ca/pages/mmana-gal.php</u>). Once your antenna has been modelled and its pattern calculated :

- In the menu toolbar of MMANA-GAL, select File > Table of Angle/Gain (*.csv).
- In the new window which has pop up, enter the figures for the Azimuth and Zenith fields <u>exactly</u> as shown below.
- Enter the name **Other Antenna Pattern.csv** (and no other name, otherwise the processing macro won't work), to be saved under C:\Sun Noise Measurement (and nowhere else).
- Click on **OK**.
- Exit (Close) MMANA-GAL.

Open (*.maa)	Far field plots				
Reopen					
Save (*.maa)		Set of paramet	ers a table Angl	e/gain	
Save as(*.maa)	Y	Angle	Start deg.	Step deg.	Num, of step
Comments	0		0.0	0	
Open far fields (*.mab)		Azimuth	0.0	U	U
Save far fields (*.mab)		Zanith	00	0.1	001
Open optimization log (*.mao)		Zeniu	90	0.1	901
Save optimization log (*.mao)	-10	C-\S	in Noise Meas	urement\Other A	ntenna Pattern c
Table of currents (*.csv)					
Table of near fields (*.csv)	-20		OK	Cance	
Table of Angle/Gain (*.csv)					
Table F/SWR/Gain/Z (*.csv)					
Create list F/R/jX (*nwl)	$\mathbb{H}(\mathbb{O})$				
	- The Arris				

- (1) : In the file Ground Gain Geometry and Magnitude Calculator File.xlsm (see section 4.2.3.), select the Type of Ground, fill in the Frequency, Height and Ground slope.
- (2) : Select Antenna Type as "Other antenna".
- (3) : Replace "Name as you wish" in the cell highlighted in yellow by the name of the antenna to import (any name is allowed here, no specific convention required).
- (4) : Click on Import Other Antenna.
- Save this file (don't change its name) in C:\Sun Noise Measurement\Tools (nowhere else) • and **close** it.

Type of Ground :	Good	• (1)	
Conductivity σ [S/m] :	0.015		
Permittivity Er :	20		
Freq [MHz] :	144.0	(1)	
Height [m] :	17.3	(-)	
Ground slope [°] :	0.0	Ground Slope in front of Antenna. 0 for Flat or Negative for Downward Slope	
Antenna Type :	Other anter	Import Other Antenna (4)	
Maximum F.S. Gain [dBi] :		(2) (3) Name as you wish Type in other antenna type	name

Further proceed on the completion of the processing according to the explanation given in section 4.2.3.

Ground Gain - Simulator Spreadsheet