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.

,E_w oovmao:o% qu_xmo:gmnmmaa%a same as moH %w Bozo&:oamzo
wave with components equal to .

E =\{a> vxe:é . o (7.31)
E, =C\(a; gttt .+ Co) - (132)

From (7.21) and (7.30) it is clear that for a completely polarized wave
I711=0
Linear Polarization

For linear polarization the wave must, of course, satisfy the requirements for
complete polarization, and in addition

=0, *2a, ... | (7.33)

Then the coherency matrices for monochromatic and completely polarized
polychromatic waves are, respectively,

H a’ (-D"a.a, ‘
= T aa, p J m=0,12,... (134
and
_ 1 (%) (-1)"C,(d%)
=35 ek Gy ] (739

More particularly, the matrices

=sly obsly TF501E31L T oa

represent linear polarizations that are, ammnmoaz\m_w, x directed, y directed, 30
from the x axis, and 135° from the x axis.

Circular Polarization

We saw previously that for circular polarization the component mEE:camm
are o@:.& and

(MLl

$=xim (7.37)

for left and right circular polarization, respectively. Then the coherency

“elements of [J
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matrix becomes .
-3 715 ] |
V1=3 ioilzlo o1 (7.38

for left and right circular polarization, respectively.

7.4. DEGREE OF POLARIZATION

A plane wave may be considered as the sum of N independent plane wave:
traveling in the same direction. In particular, we will consider a quasi
monochromatic wave to be the sum of a completely polarized wave and :
completely unpolarized wave. We may show that this representation is unique
by showing that any coherency matrix can be uniquely expressed in the formr

[J1=[T"1+ [P (7.39
s&oaw
IS A
with
Az0 Bz=0 Cz0 BC-DD*=0 (7.41

If we compare (7.40) to the special case (7.24), we see that [J] is the
coherency matrix for a completely unpolarized wave. If we use || J|| = 0 as the

criterion for a completely polarized wave, then [J®] is the coherency matrix

for a completely polarized wave.
We must next show that the moooBﬁozcon into completely polarized anc
completely zsmuo_mzwoa waves is unique. This we will do by obtaining the
and [J¥] from the known elements of [J]. From (7.39) anc
(7.40) we may ,S:o

A+B=1, () D*=J, @©
S (7.42)
D=J, (b) A+C=J, , (d)
Substituting (7.42) into the last equation of (7.41) gives
(Ve — AU, — A - T T, =0 (7.43)

which is a quadratic in A with solution
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A=Y, +T,) % 3[(J, + T, =41 (7.44)

Substituting (7.44) in (7.42a) gives

B

]

2o = 1,) % 30+ 7, = 4111
2 = 1) F 3 = T + 40,032,177 (7.45)

Xy

Ir

From the second form of (7.45) we see that the negative sign for the last term
is not allowed since it would make B negative, contrary to our hypothesis.
Then the 4, B, C, D values of (7.42) are found uniquely from

A=30+ 1) = 3 + 7, =4I @

B=3(Ju = J,) +3[U + 7,7 =41 (0)

C=30, = L)+ 30+ 1,7 =47 © (7.46)
D=7, (d)
D* = T (e)

The Poynting vector Emm:m.ﬂcaa of the total wave is
S=Tr[J]=J, +J, (7.47)
and that of the polarized part of the wave is
S,=Te[JP|=B+C=[(J,+ 7,V -4|J1'" (7.48)

Quite reasonably, the ratio of the power densities of the polarized part and
the total wave is called the degree of polarization of the wave. It is given by

s a1 |
R=22= T . S . 7.49
s, U aLeny (7.49)

= Tty = 50+ ,,)°

and therefore
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Let us consider the two extreme values of R. For R = 1, (7.49) requires
that
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i71=0

which is the condition for complete polarization. Then |u, | =1, and the x

and y wave components are mutually coherent. For R =0, (7.49) requires
that '

Uee =, + 41, [P =0
which can be satisfied only by

s T = .~§ . &Q = .\i Nc.
It follows that |u, | =0 and E, and Ma. are mutually incoherent.

As we have just seen, R=0 requires that E, and E, be mutually
incoberent. The converse is not true. For mutual incoherence Jy=J.=0
and |p, | =0. Then

P PR L et
AN\«N + .Nvd.vu .Nxx + .\.6,

We see that T&c,_ = 0 is not sufficient to give an unpolarized wave. To make it
completely unpolarized, we must also have
T = \E

We can separate the matrix [J] of (7.24), representing the unpolarized part
of a wave, even further, as

n-3lo ol+30 7] @31

which indicates that an unpolarized wave can be regarded as being composed
of two independent linearly polarized waves orthogonal to each other, each of
equal power density. :

Just as readily, we could have written

O K PR R

showing that with equal validity we could consider an unpolarized wave to be
made up of two independent circular waves of opposite rotation sense.
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or, solving for the coherency matrix elements,
. , 1 . .
We previously defined the Stokes parameters of a monochromatic wave by I, = oA S+5) () -
the equations’ 0
1
B .mon_mu_N.lmLN (@) ; , Iy = A!Ncaolh_v (b) .
- s . (7.56) It
S=IEF-IEF (v N P ,
1 =IE] - E, (2.184) =3z 68 ©
S, =2|E}|E,cos ¢ (o) 1 .
| Te= 37 (5:+JS) ()
S, =2|E[|E,|sing (d) i 0 ,
. . In terms of the Stokes parameters, the statement
For quasi-monochromatic waves a more general definition, which reduces .ﬂ , :
to AN.H.%C for time-independent amplitude and phase of the wave compo- , E) (7.22)
nents, is ’ becomes
So=(al)+(al) (a Se=S;+ 52+ 82 (7.57)
8, =(a?) — (a}y . (b) 7.53) ; For a completely polarized wave the requirement
} S;=2(a.a,cos $) () : I7l=0
§;=2(a.a,sing) (d) , gives immediately
. where

S3=S7+582+5?

b=¢ —é (7.54) A ) in accordance with (2.185).

Ty TE ’ ; Just as we separated the coherency matrix of a quasi
into the sum of coherency matrices for a completely
completely unpolarized wave, we can decompose a w.
in terms of its Stokes parameters. We write for the

-monochromatic wave
polarized wave and a
ave in the same manner
general wave

If we compare these parameters to the elements of the coherency matrix
(7.14), we see that

S0 =2Z,(J.+J,) ()

H=SP+SY @ S=5P+50 (o
= - b o (7.58)
Sl dy) ) 755 | S=SP+SP (1) s=sPs0 (g
$,=2Z,(J,, + J)  ©

where superscript (1) refers to a completely :Euo_mnwon_ wave and (2) to the
polarized wave. .

.Wu = NNQ\.A.NMQ - wkv AQV

.. ,CES_E.W& Waves .

. L For a completely unpolarized wave we found earlier that
" The author regrets the conflict in notation where S is used for power density and the Stokes

ESB@S??mmﬁxmmvﬁuiﬁﬁmi:rwému_:uw:.na subscript and the power density will
not. ,

: Jo=J, (@ Jy=J,=0 (b) (7.23)
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Then from (7.55) we have )

SN=8sW=gsM=g (7.59)

Complete Polarization
For this case we have, rewriting (2.185), .
Py =(PY+(PY + 5Py - (7.60)

Degree of Polarization

In light of (7.59) the general Stokes parameters of (7.58) simplify to

5=5"+5 @ S5=50 ©

(7.61)

i

5, =8P (®  $=50 ()

Equations (7.60) and (7.61) can be combined fo give
SV =5,~VsT+5i+ 53
and
SP =152+ 53+ 53
The degree of polarization was defined earlier as the ratio of power

densities of the polarized part and the total wave. But S measures the
density of the polarized part and S, the density of the total wave. Then the

(7.63)

§@ Vsi+s:? +83

S So

(7.64)

7.6. POLARIZATION RATIO OF PARTIALLY POLARIZED WAVES
We can obtain the polarization ratio and the polarization ellipse characteris-
tics of the polarized part of a wave just as we did for the completely polarized
wave. From (2.192a) and the relation between p and P, we can write the

polarization ratio in terms of the Stokes parameters for the polarized part of
the wave as

SP s
S+ 5P

- p (7.65)

(7.62)

degree of polarization of the wave in terms of its Stokes parameters is ;
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and if we use (7.63) and (7.61) to find P in terms of the parameters of the total
wave, this becomes

S, + .
pe—— 2t » (7.66)
S, +VSi+S:+S;
In the same way the circular polarization ratio g, from (2.192b), is

@ _ ic@

S, =S,
q=

SP-5P  \sTrsitsi-s,

(7.67)

_ Interms of the coherency matrix o_niozﬂm for the partially polarized wave,
the polarization ratio becomes, substituting in (7.66) from (7.55) and making
use of (7.64), :
_ 27 ,
= = 7.68
P=®+Di 7 ®-DJ, (7.68)

where R is the degree of polarization of the wave.
For complete polarization we have

1 . I S
R=1  J.=57EEl J.=57 EE,

and (7.68) reduces to

Iry

-
P E.

7.7. RECEPTION OF PARTIALLY POLARIZED WAVES

A wave with field intensity E falling on a receiving antenna with effective
length h produces an open-circuit voltage at the antenna terminals,

V=E-h (3.15)

This holds whether E is coherent or not, but we are concerned here with
partially polarized waves and will accordingly consider the power supplied to
a matched load on the antenna to be [5]

(vv*)

W="3r

(7.69)

a

where R, is the antenna resistance (radiation resistance plus loss resistance).
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Using (A.5) and (A8), R, may be put into the form

Zsh-h* .
= 7.70
R, 44, . (7.70)
and if we use this and (3.15) in (7.69), we get
A
= < . *h)* 7.71
V= sz (E h)(E-1)°) (7.71)

If we note that time averaging is unnecessary for the receiving antenna, the
received power becomes

W= A ho1? E E* * *
NN@U.—-* Q L A x kv X! A £3 v.v

¥

+ ﬁimwﬁv +|h,[(E,E*)) (7.72)

y

which becomes, using the elements of the coherency matrix of the incident
wave, 0

\» . .

= —- .—M* Q\uk*m.\kk +.NN\~W.\§~ + \«W\Nk.\vi + :\N.LN.\EL A‘N..N“wv

We saw earlier that a partially polarized plane wave may be considered the

sum of a completely polarized wave and 3 completely :Euo_mmuma wave. The

coherency matrix elements of the component waves are given by (7.40).
Substituting into the €quation for received power then gives

= mm.ww lIn)(4 + By + Bh3(D)+ hth,(D*) + I *(a+C)] (7.79)

This form may be separated to give

W=W+W'=44+ _.wf..w (1h,1*B + hh¥D + ﬂ&? +h*C) (7.75)

where the first term,

W=4.4 (7.76)

which Rvnmmana the power received from the unpolarized portion o.m m:n
wave, is independent of the polarization characteristics of the receiving
antenna. It is informative to express this power in terms -of the degree of
polarization of the wave. From (7.46a) and (7.49) we get

A=30,+17,)1-R) @
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or, in terms of the power density of the wave,

W'=4,15(1-R) (7.78)

Note that if the wave j unpolarized (R=0), the maximum power that
extracted from the waye is ‘one-half the power that could be utilizeq from a
completely polarized Wave polarization matcheqd to the Teceiving antenna,
We need not be concerned further with W since nothing we can do with
the polarization of the receiving antenna wijj either increasc or decr i
We therefore turg our attention to the power received from the completely’
polarized part of the wave and attempt to maximize it. From (7.41) and
(7.46) we note that B and C i

g4 lN :
W= (B + hh;D + hth D* 4 I, [2c) (7.79)

can be

are positive R,& - We therefore first maximize the sum of the two middle terms
of (7.79) by setting

he=lh e (a) hy =1kl ()

D=|Dle” (9 (7,80

It is at once obvious that the sum

hh3D + hip D
is maximum if we choose
B —B.=5 (7.81)
Then w becomes
" kAﬂ
L (N Ak 1l [D] + |1 [2c) (7.82)

We can maximize W by varying |h | and |k, | while holding h - h* constant
This is an appropriate constraint and was discussed in Section 3.4, Differen-
tiating W with respect to |4, | given by .

=(h-h* — |z (23172
M| = (b -p* 1,1 (7.83)
and setting the derivative to zero gives

P=lnf g

with solution .
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|_c “|hl_ B
=] @ =5 ® (7.85)

Wl

of these forms is the inverse of the other, and this leads to the requirement

. » BC-|D|*=0
which agrees with (7.41). Since |D]#0, then B#0 and C #0.
Combining (7.85) and (7.81) leads.to the relations

R, ¢ h, B
R D (a) h-D (%) - (7.86)

If these values are substituted into the equation for W,,, the power received
from the polarized part of the wave becomes

W’ =A,(B+C) (7.87)

which is obviously maximum power rather than minimum.

From the equations for B and C, (7.46); the power densities (7.47) and
(7.48); and the definition for degree of polarization, R; the maximum power
that may be received from the polarized part of the wave is

Wi, =AS,=ASR (7.88)

isaam.mnmmgovoémnamnm:%o::oUo_mnNmawm:o?raiw<om=a.mum5m8m
the total wave. ) -

It may be shown that if the wave is completely polarized, the choices made
-for the receiving antenna effective lengths in (7.86) are the same as those
made in (3.36). This is left as an exercise.

It was noted earlier that for the unpolarized part of the wave the maximum
power that can be received is one-half the power that could be received from
a polarized wave of the same power density using a matched polarization
receiver. The received power is independent of the receiver polarization.
Then in order to maximize total received power, we need only to match our
receiver to the completely polarized portion of the wave using (7.86). The
total received power is then the sum
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PROBLEMS

7.1. Consider a monochromatic wave so that, for example, in (7:79),
B=1J_,, and the coherency matrix elements can be simplified. Show
that the choices made for the receiving antenna in (7.86) reduce to the
choices made for the monochromatic wave in (3.36).

7.2. Derive Eq. (7.87).
7.3. Obtain the effective length components analogous to those in (7.86) if

it is desired to minimize the power received from the polarized part of
the wave.




